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Abstract

Decentralized control has the advantages of simplicity and robustness over
centralized control. By adding an adaptation mechanism to the decentralized law,
further robustness to uncertain interconnections and subsystem dynamics is at-
tained. In this thesis, strutural characteristics of the interconnection structure
are exploited in order to prove the global stablity of decentralized adaptive con-
trol laws. Provided the structural constraints are satisfied, adaptation gains will
automatically adjust to levels that assure stability of the overall system. Several
example simulations are given to illustrate the operation of closed-loop controllers
using this approach. To further demonstrate the viability of the approach. the
adaptive state feedback algorithm was implemented as the joint servo controller
on a PUMA robot arm at the Robotics Research Laboratory. Experimental re-

sults with this algorithm, along with comparison runs using a fixed decentralized

controller, are presented.
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1

Introduction

Present day economic, technological, and environmental systems are large
and complex. Gaining an understanding of large scale systems, that is, modeling
their behavior and designing appropriate stabilizing controls, is a foremost chal-
lenge of modern system theory. One approach to large scale system modeling and
control is decomposition of the large system into smaller, more manageable units.
This is known as the decentralized approach. Decentralized control schemes have
proven to be robust to a large range of uncertainties and nonlinearities in inter-
connections and subsystem dynamics. For the purpose of decentralized control,
decompositions of large scale systems are typically formulated to isolate uncer-
tainty about system behavior to the interaction between subsystems. Thereby
the subsystems themselves are well modeled and decentralized controllers can be
designed according to standard téchniques.

It is often the case however that such an arrangement is impossible, and
that subsystems parameters are only poorly known, or not known at all. For this
reason, adaptive decentralized control schemes have been of recent interest. Adap-
tive control algorithms offer the benefit of being robust to uncertain subsystem
dynamics, whereas the large scale methodology offers simpler control designs and
robustness to interconnection strengths. Additional robustness to interconnection
strengths is afforded through the adaptation mechanism, which tends to increase

local subsytem stability such that the overall system is stabilized regardless of the

strength of interconnections.

In this thesis, we develop the theory of decentralized adaptive control for
decentrally stabilizable systems. The new schemes depend upon local high gain

feedback to stabilize local systems sufficiently to overcome interconnection distur-
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bances, leading to a stable overall system.

The question of decentralized stabilizability was first studied by Wang and
Davison where it was tied to the presence or absence of fixed modes [1]. Siljak [2]
introduced a robust form of stabilizability called structural stabilizability, and the
corresponding structurally fixed modes. Tests for structural stabilizability were

developed, along with constructive methods for the control design [3-7].

The design stage usually requires parametric information about the subsys-
tems and interconnections in order for feedback gains to be properly chosen. In
this thesis, we assume that such information is unavailable, and resort to adaptive
methods for automatically chosing the gains. It turns out that in all cases where
a fixed decentralized control design is possible because of decentralized stabiliz-
ability, an adaptive controller will also work. The required a-priori knowledge 1s
limited to upper bounds on the norms of the system and interconnection matri-
ces. Furthermore, in a certain subset of cases, even these norm bounds are not

necessary to guarantee a stable design.

We use the model reference adaptive control (MRAC) approach in our study.
In this approach, feedback gains are tuned during plant operation with the ob-
jective of matching closed loop system response to that of a reference model. A
survey of model reference adaptive control is given in [8). Parks [9] first introduce
a systematic design procedure for adaptive controllers based on the second method

of Liapunov [10]. Monopoli [11] later extended Parks idea to a general class of

plants.

Further work lead to solid stability proofs [12], discrete time versions [13],
relaxed conditions on the plant [14,15], conditions for convergence of the parame-
ter estimates [16,17), allowance for unmodeled high frequency dynamics [18], and

extension to multi-input multi-output systems [19 .

A decentralized adaptive regulator was first proposed by Davison [20]. Later,

as the adaptive control theory developed more decentralized adaptive schemes
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were developed [21,22]. The structural stabilizability conditions for decentralized
adaptive control were first reported in [23,24].

The success of both decentralized and adaptive control in applications has
been well established. Decentralized controllers have been applied to the control
of electric power networks [25] and spin stabilization of the Skylab spacecraft [25].
Adaptive controllers have been implemented in several process control applica-
tions, including the control of a paper mill [26]. and an ore crusher [27].

Recently, there has been much interest in decentralized adaptive control of
robot manipulators. Experimental work using an industrial robot arm has been
done by Seraji [28] and Gavel and Hsia [29].

The thesis is orgainized as follows. We first introduce the decentralized
adaptive control problem in a formal sense in Chapter 2, and then develop an
adaptive controller along with a proof of stability for a restriced class of decentrally
stabilizable systems in Chapter 3. In Chapter 4 we recognize a spinoff benefit for
the case where subsystem dynamics are known to the designer, but where bounds
on interconnection strengths (required in the fixed control design) are unknown,
and develop a suitable adaptive controller. In Chapter 5 the results of Chapter 3
are extended to the case where only output variables are available for feedback,
and dynamic compensators must be used in the control law. In Chapter 6 we again
return to the state feedback case but now consider the wider class of decentrally
stabilizable systems. In Chapter 7 we apply the theory to robot manipulators,
and in Chapter 8 present the results of laboratory experiments with a six degree
of freedom robot arm. Appendices A and B are provided as tutorials on the large

scale system and adaptive control theories respectively.
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Problem Statement

In this chapter, we formally state the decentralized adaptive control prob-
lem. We give a mathematical description of a large scale system in terms of its
component subsystems and subsystem interconnections. This will lead naturally

to the adaptive control algorithms and proofs of stability given in subsequent

chapters.
Consider a collection of N subsystems
Sz, = Ajz; + bju; + Pyv,
i = ¢ & ieN (2.1)
wi = @iz,
where z;(t) € R™, ui(t) € R and yi(f) € R are the state, input, and output of S;
at time t € R, and N = {1,2,...,N}. In (2.1), v; € R™ and w; € R'* are the

interconnection inputs and outputs of S; from and to other subsystems S;, j € N,

at time t € R, which are related as

% = filt,w), i€N (2.2)

where w = (v, ], ... wI)T.

The overall system S, which is composed of subsystems S; interconnected

as in (2.2), can be given in a compact form

S:z=Apz+ Bu+ Pv

y=Cz (2.3)
w = Qx
where z(t) € R", u(t) € RY, and y(t) € RY are the state z = (z7,27,...,2%)7T.
input u = (uf,w?, ... ul)T, andoutput y = (7, 4. .., y%)T of S at time t € R.
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The constant block diagonal matrices

Ap = diag{A;,4,,. AN}
B = diag{bi,bs, . by}
C =diag{cT T = . % (2.4)
P = diag{P,, Ps..... Py}
Q = diag{Q1,Q2,. . Qn}

have appropriate dimensions. The vectors v(t) € R™ and w(t) € R, which are
defined as v = (vF,vT,.. ., v1)T, and w = (w¥ wf, ., wk)T are interconnected

as
v=f(t,w) (2.5)

The function f : R x R™ — R! is continuous and bounded in both arguments,
and sufficiently smooth so that the solution z(¢;¢g,z) of S is unique for all ini-
tial conditions (to,z9) € R x R"™ and all piece-wise continuous inputs u(-). In

particular, we assume that there exist nonnegative numbers ;; such that

N
j=1
where || - || indicates the Euclidean norm of the indicated vector. Henceforth || - ||

will denote the Euclidean norm if the argument is a vector, and the Spectral norm
if the argument is a matrix.

We presume that neither the dynamics of the subsystems, nor the strength
of the interconnections are known a-priors. That is, the elements of the matrices
A, b;, and ¢;, and the numbers &;;, are not specified to the designer beforehand.
We can only assume that the pairs (A, b;) are controllable and the pairs (A4, ¢;)
are observable (which is equivalent to assuming the order of each subsystem). The

controllability assumption guarantees a choice of the coordinate system such that
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the matrices of the decoupled systems have the companion form

0 1 0 0 0
A = 0 0 1 0 0 = :
SR 0 (2.7)
~aj -a) -af .. -a} b
T _ i i i
¢ =( ¢ ¢ Cn.)

The uncertainty about the subsystems S;, which is reduced to the unspecified
coefficients of A;, b;, and ¢;, compounds an essential uncertainty about the overall

system S caused by our ignorance of the interconnection strengths &;;.

A way to overcome the uncertainty about the interconnection strengths in
S is to exploit any special structural features of S which make it a decentrally
stabilizable system [4], that is, a system where there exists a fized stabilizing
decentralized control law for any fized interconnection strength. We shall show
in subsequent chapters that such a structural characteristic ensures the existence
of adaptive decentralized laws which can stabilize S by adjusting the local gains
to compensate for unknown, fluctuating levels of the interconnections as well as

unknown subsystem dynamics.

The control objective is to either regulate the state, z(t) of the systems S
to zero, or force z(t) to track the state of a given reference model. A model for S

is formed by assigning to each subsystem S; a local model

M;: zpni = AmiTtm, + bmlri
teN (2.8)

IYmi = Cﬁ,-z‘m.
having the same dimensions as S;, and stability characteristics we would like S;
to have. By stacking up the individual models M,, we obtain a model M for the
overall system S,

M: &, =Anzm + byt
(2.9)

—
Ymn = Tm,

6



where r(f) € RY is the external (reference) input of M. As in (2.4), we have

An = diag{Aml ) Ama, - AmN}

Crm = diag{cq; . cpa. - .Cmn}

Coordinates for each local model M; are chosen so that the triples (4., dm;.,
cT.) are in the companion (controller) canonical form as in (2.7). With this choice
of coordinates, it is clear that there exist constant vectors k' € R™, kj; € R, such
that

Ami = Ai + bik:T| bmi = b-k‘a; (211)

These model-matching parameter settings are, however, unknown due to the fact
that the subsystem dynamics are unknown. We only assume that we know the sign
of b* and, without loss of generality, can set kg; > 0 for all i € N. It is important
to note that, because of the interconnections among the subsystems, the ideal
setting of parameters may not be such that the isolated subsystems match the
corresponding models. Instead, different, possibly higher gain settings may have

to be chosen by the adaptation mechanism in order to cancel the interconnection

disturbances.



3

State Feedback
Adaptive Control

We are now in a position to define an interesting class of decentrally sta-
bilizable systems, and proceed to derive a state feedback decentralized adaptive
controller for that system. This will be followed by a proof of global stability.

Assume that the interconnection signals enter the subsystems only through

the range space of the control variables. This condition is satisfied if every matrix

P; has b; as a left factor, that is
P;=bjp;, 1€N (3.1)
for some constant vectors, p; € R™:. This special structure for interconnections is
a sufficient, but not necessary, condition for the system to be stabilizable via fized
decentralized control [7]. We will exploit it here and in the next two chapters in
proving global stability of proposed adaptive control laws.
We start with the state regulation problem where it is desired to maintain
the state of system at a constant setting. Without loss of generality, we can assume

that the desired equilibrium state of the overall system S is zero. To drive the

system state always toward zero, we use the local state feedback control laws
Y § ;
ui=6;z,, ieN (3.2)

where 6,(t) € R™ is a time-variable adaptation gain vector at time ¢ > t;.
To design a suitable adaptation law for 6,(t), we choose a stable reference
model M; whose dynamic behavior we would like to have matched by the closed-

loop system. We then choose any symmetric positive definite matrix G; and solve

the Liapunov matrix equation
AT Hi+ HiAmi = =G,. 1€N (3.3)
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for H;. Equation (3.3) is quaranteed to have a unique symmetric postive definite
solution for H; since A,.;, which is associated with the reference model, is a stable
matrix [30]. Software is commonly available for solving (3.3) numerically [31].

Next, we define k; € R™ as
ki = Hibmi, i€ N (3.4)

and propose to use the local adaptation laws

0; = —Ty(kFz)z,, i€eN (3.5)

where I'; i1s an n; x n; constant symmetric positive definite matrix, and 6;(tg) is

finite.

To summarize, the closed-loop system is described as

S: & = (Ami + bid] )z + bip] fi
. B ieEN (3.6)
¢i = —Ti(kf z))z;
where ¢;(t) € R™ is the ith parameter adaptation error at time t € R, defined as
$i=0,—6, ieN (3.7)

and 87 = ki is the constant, but unknown, model matching gain vector that
satisfies equation (2.11). We define ¢ = (67,07, .. ¢%)T and denote the state
of S as (z,4) € R" x R".

(3.8) THEOREM. The solutions (z, ¢)(¢;to, 2o, o) of the system S are globally
bounded, and z(t;tg, 2o, ¢9) — 0 as t — oo.

PROOF. We define a function V: R" x R" — R, as

N

V(z, ) = E [koszl Hizi + (80 + 0k)T 7 (gi + pki)] (3.9)

i=1
where the number p > 0 is not yet specified. The total time derivative V(:c, ¢)(3.6)

of the function V(z, ¢) which is computed with respect to (3.6), is obtained as
V(z,8)36) = —27 Gz ~ 202" KT Kz + 22T KTPf (3.10)

9



where .
G = diag{kg,G1, k3,G2, . .. k{nGn}

P = diag{p] . p},. .., PN} (3.11)
K = diag{kT kT, k%}.

Completing the square in (3.10) we get

Via, (z,¢) = — 277Gz - pzT KT K=z
(26 ) c ) o (3.12)
—p(Kz = p~'PAYT(Kz — p™'Pf) + p~ fTPTBF.

By using the boundedness assumption (2.6) concerning f(t, w), we get from (3.11)

the inequality

V(.’L‘,¢)(3_s) S - [’\min(G) - p—1£2“]3“2 ”Q“z] ”17”2
V(t,z,6) €ER x R" x R"

(3.13)

where Anin(G) is the minimum eigenvalue of G, and € = max; jen €ij. By selecting

a sufficiently large finite value p* of p so that

p* > ANLGE| 2| eIl (3.14)

we get V(z, $)3.6) < 0 for all ({,z,4) € R x R™ x R". Using standard ar-
guments from the Liapunov’s theory (e.g, [10]) we conclude that the solutions

(z,¢)(t; to, zo, $o) are bounded.

From the boundedness of solutions and definition (3.9) of V(z, 8), we con-
clude that V(:c, ¢)(3'6) 1s uniformly continuous on R x R™ x R™. Furthermore, the
function V(t) = V [z(t), ¢(t)] is decreasing and is bounded from below. Hence,

lim V(t)=infv(t)=v, >0 (3.15)

Denoting V(t) = V [2(¢), #(8)](3.6), we have

t

im [ V(r)dr=V; -V, < oo (3.16)

t—00 to

10



where Vo = V(zg). Then, from (3.9), (3.10), and uniform continuity of V(t),
we have lim;_ o V(t) = 0, and limy_, o z(¢;0, %0, ¢0) = 0 for all (fo,z0,¢0) €
RxR®xR" Q.E.D.
(3.17) REMARK. [t is not necessary to know or choose p* in (3.9). The gains
of the controllers rise to whatever level is necessary to ensure that stability of the
subsystems overrides the perturbations caused by interconnections regardless of
their size so long they are finite. This 1s a pleasing result because the essential
uncertainty in large composite systems not only resides in the interconnections,
but their size and characterization is neither known nor can be predicted during
the operation of the overall system [25]
(3.18) REMARK. The boundedness part of Theorem (3.8) assures the bounded-
ness of the adaptation gains and, thus, realizability of the decentralized adaptive
control scheme.

In the state tracking problem, it is required that the state =(t) of the plant
S follows the state of the reference model M despite the fluctuating interaction

levels among the subsystems S;. Let the tracking error be defined as
e(t) = z(1) — zmit). (3.19)

where e = (eI, el ... X )T and ¢;(t) € R™ is the tracking error of the subsystem

S; at ¢ € R. To drive the error toward zero, we use the local control laws

T

Uy = 0,‘ Uy, (320)
where §; € R™ 1.
0; = (kT ko) (3.21)
and y; € R+
vi = (eF )T (3.22)

The gains k; and ko; represent the estimates of k7 and k.

11



(3.23)REMARK. This is a deviation from the standard choice of state regressor

v; = (zF,r)T used in centralized [32] and decentralized [33] adaptive control.

Instead of the state z;(t) we choose to feed back the tracking error e;(t). This fact
is crucial for the functioning of our scheme.

The resulting closed-loop system 1is
S : 2 = AmiZi + bmiri + bi(¢Fvi — KTz, + 9T f)). i€N (3.24)
where we have defined ¢;(t) as in (3.7), and
67 = (kT k5" (3.25)

Subtracting (2.7) from (3.24), we can write the error system as

S.: € = Anmiei + b,‘(¢?l/|' - ’C:Trnu +p|Tfi)

| ] i€EN (3.26)
d)" = —UP,‘¢,‘ - Fi(k"Tel)Vl' - UF,‘H:
where ¢ > 0. The adaptation law was chosen as
9.,- = —r,'(z‘?e.')l/,' —-oli6;. 1€N (3'27)

which incorporates the “o-modification”, as originally suggested in [18]. By (e, ¢) €

R™ x RN we donote the state of ée and prove:

(3.28) THEOREM. The solutions (e, ¢)(t; g, eg, ¢o) of the system S, are globally
ultimately bounded.

PROOF. We use the same type of function V- R" x R"tY — R, asin (3.9).

z

Vie9) =Y [ksiel Hiei + (0, + 00)) " I71 (80 + 08) |, (3.29)
i=1 ’
where 8; = (kT,0)7 € R™*1, and p is a positive number. We compute

N
Ve, ¢)3.26) = Z [ — kyiei Giei — 2¢f kiki T om; + 2e] kip] f;
=1 (330)
— 2peT kikT e; — 20( i + p8:)7 9
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where we have used the fact that 0_,71/,- = E?e.- Utilizing the block notation of

(3.11), we can rewrite (3.30) as
Vie,¢)(s26) = — eTGe — 2T KT K"z + 2eT KT B — 2peT KT Ke 5.31)
3.31
= 20(¢ + p8)T (¢ + pB) — 20(¢ + 06)T (6" — pf)

where K* = diag {&;7, k3T, | kn'}. Since f(t.w) = f[t,Q(e + zm)] is bounded

as in (2.6), we can use

N
it w)ll < Y €5 151 el + Nlzmsll) (3.32)
j=1

in (3.31) to get the inequality

Ve, $)z.6) < —eTGe ~2p ”I{’e”z +2||Ke|| | K™ zm]|
+ 2 (| Kel| |2 QN llell + lzml) — 20 [|¢ + o8] (3.33)
+20 ¢ + o8|

0" —pf|| ¥(te,p) R xR" x R".

After completing the squares involving Ke and ¢ + pf, and dropping negative
terms, we obtain
Ve, ¢)36) < — [)\min(G) - l)_1‘52||13“2 ||Q||2] llell® - & e + P9_”2
~ 2 _
+o7x (I + €l BRI + o 16 - o8] (339)

Y(t,e,d) ER xR™ x R™

where x = sup, ||z, (2)]|°.

Equation (3.34) can be written compactly as

V(e,$)s.s) < ~Cllell* =< || + o8| +

(3.35)
Y(t.e,¢) ER x R™ x R™,
where the constants ¢ and 7 are defined
¢ = Amin(G) = p~1€2|| 2| QI
' (3.36)

~ 2 _
1= e " x (Il + €| PIIQN) + e o ~ o8]

138



Selecting p* large enough so that ¢ > 0, we see that (3.35) implies
Vie,¢)a6) < —uV(e,¢)+n V(t.e,d) €ER x R" x R", (3.37)

where the positive number g is given by

p < min [Ana(H)C, Amin(D)o] (3.38)

where H = diag {k, H1, k. Ho, ..., kinHn}and I' = diag {I'y,['5,...,In}. From
(3.37) it is clear that V (e, ¢) decreases monotonically along any solution of S, until

the solution reaches the compact set

Qs = {(e,¢) e R" x RV : V(e.¢) < Vy} (3.39)

where
Vf = u'-lT]. (340)
Therefore, the solutions (e, ¢)(¢; %o, eq, #g) of S. are globally ultimately bounded

with respect to the bound V;. Q.E.D.
(3.41) REMARK. Within Q, we find that

llell < AL (V] (3.42)

Now, if we choose 6 o« p~2 and I  p3, and let p — +o00, we find that { — Ay (G),
n ~ p~! and, therefore, Vy ~ p~!. This implies that the upper bound on the
steady-state tracking error e(t) can be made as small as desired by decreasing ¢

and increasing I sufficiently. We should note, however, that within Q;,

6+ 8] < max(D)V;]'? (3.43)

and the upper bound on ”qﬁ + pﬂ_“ increases proportionally to the increase of p.
Thus, making o small and T large will allow adaptation gains to become high, re-
sulting in a trade-off between small tracking errors and large gains in the proposed

high-gain decentralized adaptive scheme.
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We also note that again, as in Remark (3.17), it is not necessary for the
designer to know or choose p*. Local gains adjust automatically to counter the
destabilizing effect of interconnections. The designer need only to tune the size of
the residual set by adjusting I'; and o as explained in Remark (3.41).
(3.44) EXAMPLE. To illustrate the application of the proposed adaptive scheme,
let us consider the two identical penduli which are coupled by a spring and subject
to two distinct inputs as shown in Figure 3.1. The important feature of the system
1s that the position a of the spring can change along the full length { of the penduli.
We want to design a decentralized control applied to the individual masses m,
which can adapt to the changes in the spring position a.

Choosing the state vectors z; = (61,60;)T and z5 = (84, 92)T, the motion of

the penduli can be described as
i 0 1 0 0 0 0 0
SZ$1=<9_ 0)$1+(L>u1+(_i 0)31+(k_a=_ 0>1'2
] mi3 ml3 ?
. (01 0 0 0 0 0
a=(§ o)mr(5) e (s 0)nr(Lig o)

where k and g are spring and gravity constants. For our numerical example, we

(3.45)

set g/l = 1, 1/mi?* = 1, and k/m = 2 Uncertainty in the interconnections is
represented by making a(t) an unknown function of time such that a(t)/! € [0,1)].
Comparing (3.45) with (2.1), we get the subsystem matrices as

A.—:(? é),b.—:(?),ﬂ-:(j?).@.:(l 0),i=1,2. (3.46)

In the block notation of (2.3), the system matrices are

01 0 0 0 0y
|1 0 0 0 _ |1 0 ({1 0 0 O
Ab=1¢g o g 1| Bp=Pp=|, oi’QD‘(o 0 1 0) (3.47)
0 01 0O 0 1/
and the interconnection function is
-1 1
f(t,w):?a(t)( 1 _l)w, (3.48)
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where a(t) = a2(t)/? and w = (w, ws)T
Since P, = b;,i = 1,2, the condition (3.1) for stabilizability of S by fixed
decentralized feedback is satisfied. To build the adaptive controllers, we choose

the reference models (2.8) having the matrices

0 1 0y .
Am.-_(_l _2),bm._(l),z_1,2 (3.49)

and 87 = (—2,-2,1)T,i = 1,2. Next, we choose Gi; and compute H; and k; from
(3.3) and (3.4) as

10 15 05\ , _(05Y ._
G“(o 1)’H“<0.5 0.5)”‘“(0.5)"‘1’2 (3.50)

For the adaptation law (3.5), we select ' = I3, where /3 is the 3 x 3 identity
matrix, and set ¢ = 0.01.

With the chosen parameter settings, the results of a simulation are shown
in Figure 3.2. The reference signals were

r1(t) = sin 20t + sin 5¢ + sint

(3.51)
ro(t) = sin 10¢ + sin 2¢ + sin 0.5¢

and a(t)/l = 1 for all time t > to = 0. From the plots we see that the presence
of interconnections prevents the tracking errors from converging to zero and the
feedback gains from converging to the model matching values. Instead, the gains
tend toward a near steady-state level, ky = (—=3.9.—2.3)T, which is higher than the
local model-matching gains of ¥} = (=2, --2)T. which is indicative of the high-gain
nature of the controller.

To contrast the result of Theorem (3.28) with the earlier approach [22] based

upon the M-matrix conditions, we compute the ¢ x 2 aggragate matrix W = [w;;]

as

= [ Amin(G) = Domax () 1Pl €, i =
" {_2Amu(Hi)||Pi||€ij- i#) (3.52)

From the M-matrix conditions [25] (see also appendix A) applied on W, we derive

the inequality

Amin(C;i) . .
m > 4”P|'||f,’j, 1= 1,2. (353)
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Using the definition of &; in (2.6), we have &; = 2 for 7,j = 1,2. Then, from
(3.53) we get

a(t) < 1 [ MAnin(G5) ]1/z = 0.2706, (3.54)
U 2 LR|IP | Armax(Hy)

which means that by M-matrix approach we guarantee stability only if the spring
remains connected to the lower 27% of the length of the penduli. In our example,
we allow ﬂlﬂ = 1 (spring is moved all the way up to the bobs) making the M-
matrix test inconclusive with regard to stability

A simulation of the system using a controller design based on the M-matrix
test was also performed in order to see the effect of regressor vectors v; = (27, rT)T
which are different from those of (3.22). v; = (el .r;)7, used in our example. The
results are shown in Figure 3.3. The system appears stable, however, tracking
residuals are somewhat larger than before, indicating the fact that the high-gain
approach may lead to a better performing adaptive control scheme.

In another simulation run, we show the effect of a time-varying intercon-

nection on adaptation gains and tracking residuals. We 1nject the jump

a(t) _ {0, 0 <t< 50

e 1, 50<¢t<100 (3.55)

that is, the penduli are disconnected for the first half, and maximally intercon-
nected for the second half of the experiment. Figure 3.4 shows the results for the
high gain adaptive controllers, and Figure 3.5 shows the results for the standard
adaptive scheme. The high-gain controllers maintain a tracking residual of about
0.5 throughout the run. As expected, the standard scheme behaves well when the
subsystems are isolated. However, the residuals become large when the subsys-
tems get coupled. The high-gain adaptive controllers seem robust to time-varying
interconnections, with local gains adjusting their values to maintain a consistent
tracking residual.

Finally, we compare the proposed decentralized scheme to the standard

centralized adaptive algorithm [32]. For this purpose, we use the compact notation
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of the form (2.3) to describe the closed-loop system with ﬂ}l =1as

S:z=Axz + Bu

(3.56)
u= Kz + Kgr
where
0O 1 0 O 0 0
-1 0 2 0 110
A= 0 0 0 1 B = 0o 0}’ (3.57)
2 0 -1 0/ 0 1

and K and Ky are the gain matrices of appropriate dimensions. The model-

matching gains are

w_ (0 =2 =2 0 . {1 0
K -(_2 o __2).1{0_(0 1/), (3.58)

Defining § = (K, Kp) and v = (2T, 7T)T, the adaptation law is
§=—06—vKev (3.59)

where K = diag{kT,kT} as defined by (3.4), e = (eT,el)7, and ¢ and v are
positive numbers. For simulation purposes, we chose ¥ = 1 which corresponds to
I' = I3 in our earlier runs. We set & = 0 because there are no external disturbances
or unmodeled interconnections, so that perfect model-matching is possible. Our
reference signal is persistently exciting, so that ¢it) = [(t) —6*] — 0 as t — >
[32). Results are plotted in Figure 3.6 for 1) < ¢ < 100. Convergence rate appears
roughly the same for centralized and decentralized cases. Residual tracking errors
are smaller (eventually zero) in the centralized case, which is to be expected since
exact model-matching will occur. The centralized control law, however, requires
twelve adaptation gains, compared to six in the decentralized case. In general,
for the system composed of N interconnected subsystems, centralized controllers
require N(n + N) adaptation gains, where n is the total number of states. De-
centralized controllers require only n + N adaptation gains, and N sets of gain
adaptation equations can be run in parallel. We are led to conclude that a decen-
tralized adaptive controller has a far simpler algorithm than a centralized one, at

the price of a relatively small decrease in performance.

1%



Figure 3.1. Interconnected penduli.
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4

Utilizing Knowledge
of the Subsystems

In deriving the adaptive control laws in Chapter 3. and in earlier work on
decentralized adaptive control, there is a presumption of ignorance of subsystem
dynamics. In modeling of large systems, however, the standard process of decom-
posing the system into a number of subsystems is often guided by our knowledge
about the isolated parts of the system, and, as a consequence, the subsytems are

often modeled well, while the essential uncertainty resides only in the interconnec-

tions.

Ignorance of subsystem dynamics may therefore be only an artifice which is
used simply to make the established centralized adaptive algorithms applicable in a
decentralized setting, rather than to reflect a genuine modeling uncertainty about
the subsystems. Ideally, when the subsystems are known beforehand, the adaptive
control law should be designed to exploit the knowledge of the subsystems, while

adapting to compensate for unknown interconnection strengths.

We propose a new adaptive control algorithm which is applicable to decen-
tralized systems where the subsystems are known and the interconnection strengths
are unknown. With this new algorithm, we extend the decentralized adaptive
control theory to the much broader class of systems described as interconnected
multi-input, multi-output (MIMO) subsystems We also find that this new algo-
rithm is simpler to implement than the earlier counterparts, in that it requires
only one adapted parameter per subsystem The main theorem of this chapter
shows that the algorithm regulates the overall system to zero, or tracks a given

reference model with a finite error.



Consider the collection of MIMO subsystems
S, z; = Ajz; + Biuy + By
yi = Ciz; t€EN (4.1)
wi = Qi
where z,(t) € R™, u;(t) € RP', and y;(t) € R? are the state, input, and output of
the subsystem S, and v;(t) € R™:, and w;(t) € R'" are the interconnection inputs
and outputs of S; to and from other subsystems S;, j € N, at time t € R. We

assume that the pair {A;, B} is controllable and the pair {A4;,C;} is observable.

The interconnection inputs and outputs, v, and w;, are related as
v = fi(t. w) (4.2)

and satisfy the conic sector bounds expressed in (2.6). repeated below.

N
1At w)l| <D &jllws]l Yt w)eRxR™, i€N (4.3)

j=1
As before, we assume that the numbers §;; are fixed but unknown, thus reflecting
our uncertainty about the interconnections.
However, unlike before, we now assume that the matrices A;, B,, and Cj,

which are associated with the subsystems, are known. Furthermore, we assume

that the matrices P; are factorable as
P,=BP i€eN (4.4)

for some constant (but not necessarily known) matrices P,

The objective will be for the closed loop subsystems to follow stable iso-
lated reference models. We specify the reference models by first selecting local
state feedback gain matrices K; € RP**" which would stabilize the local isolated
subsystems. That is,

Ani = A — ByK;,, €N (4.9)
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is a stable matrix. The reference models are then described by

MI i""ll = A"llenl + 1317‘1
teN (1.6)
UYmi = CiTym,
where r; : R — RP' are bounded, piecewise continuous vector functions of time.
We now proceed with design of an adaptive control law. The first step is

to choose any symmetric positive definite n, x n, matrix G, and then find the

symmetric positive definite solution H; to the matrix Liapunov equation
AT H,+ HiA,,,=-G,, i€eN (4.7)

A solution is guaranteed to exist since A,,; 1s stable. Now choose a symmetric,

positive definite p; x p; matrix R; and define K. as
Ki=R7'B'H;,, ‘eN (4.8)

Using K; defined by (4.5) and K, defined by (4.8), the proposed local feedback

control law is
up = —Kiz; — aj({)Ke, +r;, i€N (4.9)

where ;(t) € R is a time-variable scalar adaptation gain at time ¢t > {; and

ei(t) = zi(t) — z/ni(t). We propose the following adaptation law for a(t)
&; = viel KT RiKie; — vioic,. 0i(tg) >0, i€N (4.10)

where ¥; and o, are given positive scalars.
To analyze the stability of the above control scheme, we form an error

differential equation by subtracting (4.6) from (4 1). Together with (4.10), this

describes the motion of the entire systern:

Se : é‘i = (Ami - CY.Bl.f{z) e; + B;R/Ui
] 7 i€N (4.11)
&; = 'yie'T[{;TRiK,‘G,, = 70y
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Now define e = (eT,e,...,e%)T, ¢ = (e1,a2,. -, an)T and denote the state of

S. as (e,a) e R" x RY.

(4.12) THEOREM. Solutions, (e, @)(t;to, €0, an) of the system S. are globally
ultimately bounded.

PROOF. We use the Liapunov function
N .
V(e,a)=Ze,.TH.e,--l--y'-_“‘(a‘-—a")2 (4.13)
i=1

where a* is a constant positive parameter to be specified below. Taking the total
time derivative with respect to (4.11) we get
N

V(e, a)(4‘11) = Z [—C?G,'e.’ - 20‘6?1{'?&1%&.
o (4.14)

+ 26?‘[_{?}3,'1):'0; - 20’;(!.'(0!,- — a*)l .

In view of the inequality (4.3), we can write

N
V(e,a)(‘;.n) < Z[— el Gie; — 20!"'||R?1?,-e,-||2

i=1
i - L,
+26[|RE Rieall IRE PING; N (llesll + s ) (4.15)
- 20’,‘6!,-2 + 20’,’0,‘0*]
V(t e,0) € R x R" x RY.

Now, completing the squares involving ||R'% Kiei|| and ¢, and utilizing the block

notation introduced earlier, we have

Vie,)an < = [Aun(G) = a2 REPIPIQIP el - o flos — &°|
+o" IR PP NIQI sup llzm NI + o0 (4.16)
V(t,e.a) € R x R" x RY
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where @* = (a},03,...,a)T. Equation (4.16) can be written more compactly as

3 2 w12
V(e,a)a11y £ ~Cllell* —alle = a™||" + 7

(4.17)
V(t,e,a) € R x R" x RV
where the constants { and 7 are defined by
¢ = Amin(G) — @**?[|RE P'|?|1QII?
(4.18)

1= o @RI QY sup llem (DI + o,

By selecting a sufficiently large value for o* so that ( is a positive number, we

have
V(e,a)(4_11) < —pV(e,a)+n Y(t,e,a) ERxR" xRN (4.19)
where
p < min [AZ (H)¢, min(y)e| . (4.20)

From (4.19) it is clear that V(e, @) decreases monotonically along any solution of

S. until the solution reaches the compact set

Qr = {(e,@) eR* x RY : V(e , a) < V;} (4.20)

where
Vi=p'n (4.22)

Therefore, the solutions (e, a)(t;1g, €9, @) of S. are globally ultimately bounded
with respect to the bound V;. Q.E.D.

(4.23) REMARK. The adaptation law (4.10) is considerably simpler than the
ones presented earlier, since it involves only one adapted parameter per subsystem
instead of the usual n; adapted gains per subsystem. This is the main benefit of
exploiting the knowledge of the subsystem dynamics.

Once again, it is not necessary to know or specify o*, which is simply

a parameter used in the proof above. The adapted gains o; raise to whatever
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level is necessary to stabilize the overall system, regardless of the strength of the
interconnections. The size of the residual set is adjusted through the choice of o;

and ;.

(4.24) EXAMPLE We illustrate the applicability of this algorithm using the
example from the last chapter. Using the same reference model and positive

definite matrices G; and H; as before, we calculate the gain matrices

K, =(2.0, 2.0), K, =(05 05) ieN (4.23)

for use in the control law (3.9). The reference signal r(t) is given by

r1(t) = sin0.27t + sin 7t + sin 2wt
t>t=0 (4.24)
ra(t) =0

that is, it is desired, starting at ¢ = 0, to move the first pendulum sinusoidally,
while holding the second pendulum unmoving in a vertical position. At ¢t = 0, the
adapted gain, «; is zero. We use ¥ = 100 and ¢ = 0.0001 in the adaptation law
(4.10).

Simulation results are shown in Figure 4.1. Pendulum positions closely
follow the reference model, with accuracy improving over time. The gains o (t)
adjust generally upward during a transient period, and then oscillate around a
fixed positive value in steady state.

For comparison, we simulated the same system in closed-loop, but without
adaptation. Setting a;(¢) = 0,7 = {1,2}. { > 0, we get the results shown in Figure
4.2. Notice that, without adaptation, a large amount of the signal intended to
drive the first pendulum couples into the second pendulum through the connect-
ing spring, whereas with adaptation, local gains increase in order to reduce the
coupling effect.

This adaptive control law is the simplest of the ones described so far, since

only two parameters are adapted in the overall system, as compared to six for
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the decentralized adaptive controller described in Chapter 3, and twelve for the
centralized adaptive controller. For a system with N subsystems, there are N

adaptatation gains, and the N adaptation gain equations can be run in parallel.
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53
Output Feedback

In this chapter we assume that only the outputs y; of the subsystems are
available for use in feedback control. It is therefore necessary to construct a set
of dynamic controllers which will stabilize the overall system. The well known
dynamic adaptive controller for centralized systems was introduced in [11], and
proven stable in [12]. In later work, the dynamic controller was reproduced for
each subsystem in a decentralized control context in [22]. We use the same type
of controller, with a slight modification. in the present decentralized high-gain
feedback scheme.

Each subsystem controller consists of a precompensator, C? and a feedback

compensator C;-' leading to the open-loop subsystem description

Si: z = Aizi + bju, + P,

vi =l 'z,
w; = @i, t€N (5.1)

Cl . zpi = Fizpi + giu

cl. 25y = Fizpi + 9iys
where z;(t) € R™, 2,i(t) € R™ ™!, and z;,(t) € R™~*, are the states of S;, C!
and C{ at time t € R, ui(t) € RP', and y;(t) € R? are the input, and output of
the subsystem S;, and v;(t) € R™, and w;(t) € R" are the interconnection inputs
and outputs of S; to and from other subsystems S;, j € N, at time ¢t € R. We
assume that the pair {4, b;} is controllable and the pair {A;,cF} is observable.

The interconnection inputs and outputs, t, and w;. are related as

vi = fi(t,w), i1€N (5.2)
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and satisfy the conic sector bounds expressed in (2.6), repeated below.
N
16wl <& llwsll Yt w) eRxR™, i€N (5.3)
j=1

As before, we assume that the numbers &;; are fixed but unknown, thus reflecting

our uncertainty about the interconnections.

For stabilizability, we assume that there exist subsets K C N and K’ =

N — K such that ‘
Po=bpl', i€k
, (5.4)
Qi = Ql'cl? 1 1€ K’
for some constant vectors p; € R™: . ¢; € R" This type of large scale system
was studied in [7] and proven to be stabilizable by fixed decentralized feedback.

For ease in notation, we will pumber the subsystems such that K = {1,2,..., K},

K<N,andK'={K+1,K+2,.... N}.

Our proposed adaptive decentralized control law is given by
ui = 67 v, 1eN (5.5)
where
vi = (gi~z£azfisri)T (56)

1s a vector of available signals, and
0; = (dfiv C‘,j;wé}q., koi)T (5.7)

is a vector of adaptation gains. In (5.6), ri(¢) is the external reference input, which
1s a uniformly bounded, piecewise continuous function of {, and §; = y; — ym; is the

model output following error. Stable reference models M; are specified as before:

Mi - i‘mi = Amil‘mi + birl
ieN. (5.7)

T
Ymi = Coy T
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Now define the transfer functions

U)o = i)
5w TP =R
o . 'y,-(s) e — o~ :61(310) i
S; : o) - pi(s,0) = "'(6)—@(5,9) €N (5.8)
L Ymils) 5 = Ima(8)
M] . rl(s) - ‘Pml( )— mi aml(s)

which describe the open loop plant, closed loop plant, and the reference model,
respectively. The linear time-invariant system transfer function ¢;(s,#) is defined
for fixed values of # € R?™*2. In order for a decentralized adaptive control design
to be feasible, the following conditions must be met:

(¢) The plant s minimum phase, that is, the monic polynomial 5;(s) is
Hurwitz (all zeros have negative real parts).

(i1) The plant has relative degree one, that is the degree of §;(s) is n; — 1,
where n, is the degree of a;(s).

(2t7) The sign of k, 1s known. Without loss of generality, we assume that
£, > 0.

In addition to the above conditions on the open loop plant, we must chose
reference models that are stricly positive real, which means that am,(s) and 3pi(s)
are Hurwitz, and Re {¢,;(jw)} > 0 for all w € [0 x).

Under these conditions, it has been established [31] that there exists a
unique 67 = (d},, cp;, ¢}y, k3;)T, such that the closed loop isolated subsystem S,
has the same input/output behavior as the reference model M;, that is, ¢;(s,07) =
Ymi(s), 1€ N.

In fact, however, we do not know 8}, so we use its estimate, #;(t) in the

control law (5.5). The proposed decentralized adaptation law for 8;(t) is

6; = -T;(cb; +vi5i), i€N (5.9)

where I'; 1s a constant, symmetric positive definite matrix of dimension (3n, —2) x

(3n, — 2), and ¢ is a constant positive scalar.
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With 6;(t) different from 6, the closed loop isolated subsystem acts like the
reference model, but with the added disturbance input ¢7 (t)v;(t) where ¢,(t) =

0;(t) — 07 . The closed loop interconnected systern is thus described by
Si: &= Ai(8))a + bidT v + biry + Pyv, — bps 47 Ymi

wy = Q;#;
where z; = (2, ZE,,ZJT.')Tv and
A; + bidreT byl b.—c;?
A0 = gdiel  Figql g
gl'cfi-r 0 .F,'
bi = (b, 97 . 0)T
(5.11)
& =(cF,0,0)
P = (PF,0,0)T
Qi = (in O) 0)

The triple {4,(8}),6;,¢7'} is a non-minimal realization of the reference

model: o i
M,‘ B A,’(B:\li‘m,‘ + b7,
ieN. (5.12)

— AT .
Ymi = CrmiTm

The reference model is strictly positive real, so that, from the Kalman-Yacubovich
lemma (e.g., [10]) it follows that {4,(67),b,,¢T } satisfies the equations

A;T(e:‘)Ht + H; A(8)) = — 17— €L

) i€ N, (5.13)
Hib; = ¢,
for some constant, symmetric positive definite matrices, H; and I:,', some constant
vector, I; € R3 =2 and some constant scalar, ¢ > (.
An equation for tracking error ¢;(t) = #it) — I,i(t) can be derived by
subtracting (5.12) from (5.10)
Sei € = Ai(07)e; + 06T v, + P, - i’pid}z’ymi

g =l e ieN. (5.14)

1

wy = Ql(el + xmi)
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The decentralized stabilizabilty conditions (5.4) are stated with respect to
the open loop systems S. The closed loop system S with the local dynamic com-
pensators, is a structurally different large scale system, so we must restate the

stabilizability conditions in terms of the new structure. The condition
Qi=qél. i€K (5.15)

follows immediately, however it is not true that P = 5,-;0?, i € K. This is because
interconnection disturbances that enter at the input to the plant, are not available
signals for input to the precompensator as well (see Figure 5.1a). We can, however.
reflect the disturbances to the input of the closed loop system as shown in Figure

5.1b.

From (5.1) we calculate the transfer function for the open loop precompen-

sator as

CP: ppls)=cpy (sI-F) 'y, 1€K. (5.16)

When the loop is closed, the precompensator acts as a prefilter for the feedback,

reference, and adaptation error signals. This prefilter has the transfer function

CP: pi(s)=[1- cp,,,-(s)]—1 = C;T(sf - F, - g,»c;?‘)_"g,', ie K. (5.17)

In [31] it is shown that

ﬁml(\s)
Bi(3)

therefore, since both B;(s) and B,;(s) are assumed Hurwitz, we have that op,(s)

Ppi(s) = i€ K, (5.18)

and cﬁ;l(s) are stable transfer functions.

For each subsystem S.,, ¢ € K, we reflect the interconnection signal pfv, to
the input of the closed loop subsystem by disconnecting it from the input of the
plant, filtering it through the mverse of the prefilter Cf’ then feeding the resulting

filtered signal to the input of the closed loop subsystem, as shown in Figure 5 1b.

ln doing this, we have introduced K new subsystems wnto the analysis, whose
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transfer functions are @;1(3) and which have the state space representation

Fi: 3= Fzi+gplv: zity)=0.
1€ K, (5.19)
- wr, o, .1
nl - _cpg 24 + pl Ty
where z; € R™ ! is the state, pT'v; is the input, and 7; € R is the output of F;.
Since F; is a stable matrix by design, the subsystems F,; have, associated with

them, the Liapunov equations
F'H!+ H!F, = -G, i€eK, (5.20)

where both H/ and G} are positive definite n; — 1 x n; — 1 matrices.

With this modification, the closed loop error systems ge,', t € K are now

described by

Sei : 60 = Ai(8%)é; + bidT vi + by — bpid}ymi, i€ K. (5.21)

We are now in a position to fully take advantage of the interconnection structure,

as originally stated by conditions (5.4).

In summary, the differential equations for the large-scale, interconnected,

adaptively controlled system are:

Se 6= Aié; + b [¢.TV.' + 1 - d},'ymi] , te€K

i = Fizi + gipl v, i€ K
_ “ ) . (5.22)
e, = Aje; + b, [¢?V1—d},;ym;‘ + Py, i€ K
b = —Lio(¢: +07) - Ti(ef e s, i€ N=K+K
with interconnections given by
n = c;:-‘rzp,- + plrv,u 1€ K
o Qi(éz+i:mi)y 1€ K 593
o {(jlé;r(el +i‘mi‘)~ i € K’ (0' )

vy = fi(t, w). teN
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We denote the state of the overall system S, as (é. z,¢) € Q where

K
k:Zn,

i=1

T T\ 5.24
e:(e{,ef‘ L eT ( )

(5.25) THEOREM. The solutions (€, z.8)(t;tq. €q, 20, ¢o) of the system S, are
globally ultimately bounded.

PROOF. Define the function V : Q — R _ as

Vie.z,8) = 3 b (el Hieo + (6 + 00T (50 + p6)] + S 62T Hizi (5.26)
IEN tEK

where 8; = (1,0,...,0)T are vectors having the same dimension as 6; for i € N, and
p, 6; and 6] are as yet unspecified positive constants. Taking the time derivative

of V(e, z,¢) with respect to (5.22), we use the fact that 87y, = ¢T¢; to get

['/(5_22)(é, z, qS) = Z 6,‘ [—élT(i,i"T <+ Ej/i)é,' - Qézvé,d;iymi
iEN
— 2péTéeTe, — 20(e, + p8,)70,]

+ 3 [~82T Gizi + 2627 HigupT v, + 26:6T eimi] (5.27)
€K

+ Z 25,‘@?H,‘P."U,’.
icK!
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Substituting (5.23) and applying inequality (5.3), we get

Ve, .0) < Xt (~ef Guts =20 | " =20 o+ " 20 107 = 1)

1EN

- Z 82T Gl
t€K

+3 26 |éT e [Z ENesll+ €Nzl + 0+ Y (€eTes |+ x)}
1174 jEK jEK'

+ 57 26 el {Z Ellesll+x0 + Y (€]e]&] +x)}
JEK'

1€K' jeK

+3 268 |laill [Z Ellesll+0 + Y (€l ]+ x)}

€K JEK JEK’

Ve, z,¢) € Q
(5.28)

where

GiziJ?4'G£i
cpll 11 PillEs 195 1,
| H: Bl sl ||H.{9.’P.T|| &;11Qi, ||H:9ipiT || &5 llg i, “d*iéi"}

X = Erl_neejt@c{ sup ||£m,-(t)||} :

tER 4

= g?g;gmax{ﬂpiﬂ 1@ 1 pill €5 g 11
(5.29)
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[t 1s useful to examine the block structure of (5.28). Define

er = (lledll, lléall, - llex DT

e = (lexsill- llexwall - HlenlD”

ez = (|2l lzall, - 2k DT

yi=(cTe |, |cFea|,. . Ickex])”

y2 = (|é£+1éK+1|)|c‘£+2‘—"K+2]~ ‘léi'ef\‘)T (5.30)

G = diag{Amin(G1), Amin(G2). . AninlGr)}

Gy = diag{Amin(Gr+1). Anin(Gr42) .., Amin(Gn )}
Gz = diag{Amin(G1), Amin(G2), - Amin(Gy )}

D = diag{b;,82... bk, bks1. - 6N, 0. 6%}

Also, let 6 = max{6,,65... bk, bgy41, .Ex 6] 0 Yand 8 = min{éy, 69, bk

bkg1.-.-,6n, 01, .. 6%} The structure of (5.2&) can now be seen as

e‘ —
Vis.22)(€,2,¢) < — (e] ;€5 )(DL + L' D) (e-_ ) — 280 [|¢ + o8
e

05 (T Ty [ Y1 orer T T Tyng { Y1
— 26p(y; »Y:a)(~ )‘*‘2‘55(91 €y €3 )N[(~ )
Y2 y?

—_ el -
+ 26xvT | e, +2{5o"

€3

V(é, z,4) € Q

-G, 0 0
-L=1]¢Fy; -Gy 0
£F3 €F3, -Gg

and Fa;, F3y, F32, and M are block matrices of appropriate size containing all

0,. N pgl_’

where

ones, and v € RY+X is a vector containing all ones.

We note that —L is a lower triangular natrix having negative diagonal
elements and nonnegative off diagonal elements This means that —L is an M-

matrix as defined in [25). According to the properties of such matrices, it is
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possible to assign the positive constants 81,62, .,6k,8k41,...,0Nn,07,..., 6k s
as to make H = DL + LTD positive definite. Thus the first term of (5.31) will be
a negative number for all nonzero (ef el el)

Proceeding along the same line as the previous proofs we now complete the

square involving (¥7, 31T to get

: f 62 T 91 2112
Visazy(€,2,8) < — (ef e, e3)(H MM ) — 260 || + pd||
es
~ 56‘ e ‘ _ €]
d QQXP (¥1) - Eé—MT €9 + 26£VT €9
Y2 op es es
5o [j6° ~ o8]’
V(é, 7 ¢) € Q
(5.32)
Inequality (5.32) can be written in the more compact form
Vis.on)(8,2,8) < = CII(&, 2)II” - 280 || + o8| + ¢ lI(e, )| + (5.33)

V(é,z,¢) € Q

where ¢’, and 7 are positive numbers, and ¢ is the minimum eigenvalue of H—
(26p)~* €262 MMT . Since H is a positive definite matrix, we can choose p suffi-

ciently large that ¢ is a positive number. In that case, (5.33) implies

‘-f('azg)(é, Z, ¢) S _uv(és Z, ¢) + H’V'l/z(é‘ z, é) + 7, V(é, z, ¢) € Q1 (534)

where

®
(A

5! min [A;l},_x(ﬁ)c, AzL (H')C, 2Amin(T)80

e (5.35)
/ -1 - ~1
(H)] ¢

IV

67 max [Anl (). 27!

min

From (5.34) we can conclude that V(e,z,¢) decreases monotonically along any

solution of S, until the solution reaches the compact set

Q= {(6,2,6) €2 V(e 2.8) < Vy}, (5.36)

43



where

oo 1/2 2
V= (20)7? [u’ + (‘u’“ + 4w7) ] (5.37)

Therefore, the solutions (¢, z, ¢)(¢; to, o, ¢0) of S. are ultimately bounded with
respect to the bound Vy. Q.E.D.

(5.38) REMARK. Again, if we choose ¢ x p~2 and I' o p® and increase p, we
find that V; ~ p~!, as before, and the residual set can be made as small as desired.
(5.39) EXAMPLE. We illustrate the adaptive algorithm using the dual pendulum

example introduced in Chapter 3. This time we assume that the only measureable

variable is

v=(10 01l)g =12 (5.40)

and we wish to track the motion of the reference model

Am,=<_01 _12),bm.-=<(1)),c3;,=(0.5 05), i=1,2. (5.41)

The pre- and post-compensators are given by

2},,' = —2p + U
i=1.2 (5.42)

zpi = —zpi + Y
and we apply the reference signal described by (4.24). The results are shown in
Figure 5.2. Notice that initially, the pendulums begin to fall, but as the parameters

adjust, tracking error approaches the low magnitudes that were observed with the

state feedback algorithm.
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Figure 5.1. Reflecting interconnection disturbances to the input.
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Figure 5.2. Tracking error and gains, output feedback scheme.
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6

Application to a
Wider Class of Systems

We now examine the wider class of stabilizable decentralized systems studied

by Ikeda and Siljak [5] to see if we can apply adaptive control to such systems.
The system of interest is described by

N
S: i‘,‘ = A,‘(L‘,‘ + b,-u.- + EA;J'(.”CJ)J,‘J' 1 € N (61)

i=1
where 4;;(z,t) = [a} (z,{)] is an n; X n; matrix of uniformly bounded functions of
the arguments z and t. We assume that the pair A;, b; are given in the controller

canonical form (2.4). Relating (6.1) to the structure introduced in section 2, we

have set y
filw, ) =) by (u, w; (6.2)
;=1
and defined
Aij(z,t) = Pihi; Q; (6.3)

This is a slight restriction on the allowable type of interconnection function f;(w, t),
but, in light of the results in [5] we can now replace the range of b condition (3.1)
with a weaker condition for structural stabilizability, stated as follows.

Associate with each matrix A4,; the integers m;;, where

max {¢g—f} Ai; #0
mi; = (P.9):ay,#0 (6.4)
-n A"J' =0
where n = Zfil n;. The integers m,; can be interpreted in terms of the structure

of A;; as the distance between the main diagonal and a border line of the nonzero

elements in A;; which is parallel to the main diagonal. Define a subset I =
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{31,12,...,%,} of the index set N for which i, < i3 < ... < 4, r < N. By
permuting the elements of I we form a set J = {j1,2, ... jr}, also a subset of N.

The condition for stabilizability is that the inequality

i(mikj,: 1)< (6.5)
k=1

holds for all subsets ] and J of N.

We now proceed to design an adaptive controller to stabilize systems meet-
ing criterion (6.5). The adaptive control laws are similar in form to those used

earlier. Control is given by

= (7)) = () ©

and adaptation is given by

where

9." = —I‘,-(k_:iTe,)u.- - F,‘U‘gt' (68)

where e; € R™: e; = &; — Tyni, Tyn; 18 the reference model state from equation
(2.5), and k; € R™ is defined below.
Substituting (6.6) into (6.1) gives the closed loop system

N
Sit &= Ami%; + bmiri +bid7 vi + Z Aij(z,t)z; 1€N. (6.9)

7=1

Subtracting the equation for the reference model, M, (2.5) we get the error dif-

ferential equation

N

ge,' © e = Amiei + b,‘¢?l/’.‘ + E A,-j(:c,t)(eJ + Imj(t)) 1€ N. (610)
i=1

The reference models must be chosen so that each A,,; has all of its eigen-

values placed distinctly on the negative real axis at {—alA;;, —alXy, ..., —ad,,}
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where Ax; > 0 for k € {1,2,...,n;} and 1 € N. The constant « is a design param-
eter to be assigned later. Because the eigenvalues of A, are at distinct locations,

we can apply a nonsingular transformation
& =T e, (6.11)

to S, and get the equation of the transformed system

N
Seit & = Amifi + bidTvi + > Aij(,8) (€5 + Emji(t)) (6.12)
j=1
where
Ami = TflAmiTi = diag{—-aA;; —ady,.. ., —adn,i}
Ay =TT AT,
. (6.13)
b,‘ = :r'-_lb,'
i‘m,'(t) = T;—ll'mi(t)
The transformation matrix T is given by
1 1 : 1
—aAl,- —C!)\g,' . —'a)\n,i
T=| —(ady)? —(adz)® . —(ahni)® | (6.14)
—(a)\l,-)""l —(aAg,')n'_l L —(C!An',')"'—l
We now define
ki = T, 7T oy, (6.15)
and the local adaptation law (6.8) can be rewritten as
8; = —T,(bT &)vi — [0, (6.15)

(6.16) Theorem. There exists a suffieiently large number « > 1 such the motion
of the system S, is globally ultimately bounded with respect to &, and 6(t) is

uniformly ultimately bounded.
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Proof. The proof is similar to that given by Ikeda and Siljak [5] with the necessary

modifications for the adaptive part. We use the function
N
VE @)=Y & [kyeTe, + 07071 6,] (6.17)
i=1
and take the total time derivative with respect to (6.12) to get
. N j\ ~
V(E) ¢)(6.12) = Z 61’ {2’06'5?1\|e~| + QE.T Z A,‘j (.’L‘. t)EJ
i=1

i=1

N (6.18)
+ 287 Y T Ay (=, Dams (t) — 209] ¢i — 206767 |

=1

Taking norms of terms on the right hand side of (6.18) we have the inequality

N N
Veiz) < Q6 [ — 2ak5MilE17 + 201& ] D 1A IHIE; ]
i=1

i=1

N
+ 2ell 31T 1Al sup llzmy (O] (6.19)
j=1

= ollg:ll® + oli67))*

where A\; = ming(X). In (6.19) we have used the shorthand notation ||A;;l|
to mean sup, ,[|A;;(z,%)||. The supremum exists because we have assumed that
A;j(z,t) is a uniformly bounded function of its arguments

To compute ||4;;||, we note that the transformation matrix T; in (6.14) can

be factored as

where
1 1 ) 1
=L —Az o = An
= - =M =Al (6.20)
R AL
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and

R; = diag{l,a,0?%, .., o™ '} (6.21)
Then . . il
A," = T-—. R-— A.RT
” J“ ” Al 1A b Bt} (622)
< W HINT R Ay Rs -
Using (6.4), we see that the p, ¢ element of R " 4,; R; is no greater than
o™
Therefore I
IR A Rill < o™ )% lag,l. (6.23)
p=1g¢=1
We can therefore conclude that
1Al < @™ & (6.24)
where &;; is a constant, independent of a:
~ d s ..
& = ITHINITN D D lagl (6.25)
p=149=1
Also, we see that
N7 HE< I MR =0T, (6.26)
and substituting (6.25) and (6.26) into (6.19), we get
. N N
Vi) S 6 l- 2akg MillEN1 + 20l Y ™ THE ]
= 7= (6.27)

N
+201&[ D 1T HIll4 | sup [|zm; (1] - oll:ll* + ol16711%|

i=1
We now define the N x N matrix W = [w;;], whose elements are given by

wij = {k;,)\, = &iam™ Tl i=

_E'_ja,rn,]'—l i:,é ] (628)
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and define D = diag{é:,62,...,0n}. We can now rewrite inequality (6.27) as
V(s.12) < = @Amin(DW + W D)|lé|)?

i (6.29)
+ 2x|lél] — odllel)* + ob)j6* |2

where x = max; ; {||6:;7,7*|| ||4i;l|sup, ||2m; ()||}, & = min, 6, and § = max; é,.
From the result of Lemma A.13 in [5], it is possible to choose a sufficiently large
a such that the leading principal minors of W are all positive, thereby making
W an M matrix as defined in [25]. According to the properties of such a matrix,
positive constants 8;, i € N can be selected to make the matrix DW + WTD
positive definite, and its minimum eigenvalue will be a positive number.

The inequality can then be simplified to

V(6.12) < —pV +p'ViU2 4 (6.30)

where - _
p <67  min [ky " edmin(DW + WT D), Ain(T)0]

p>2x8 k! (6.31)
1 =ol|4||?
ky = max;{kg;}, kg = min,{k};}, and ' = diag{I';,T2,...,In}. The differential
inequality (6.30) implies that V(e, ¢) decreases monotonically along any solution

of S, until the solution reaches the compact set

Q= {(e,¢) ER" x RN - V(e,4) < V}} (6.32)

where
-2 ] 12 1/2 2
V= (2u) [u + (W* + 4um) ] . (6.33)

Therefore, the solutions (¢, ¢)(¢;t0, é, #o) of S. are ultimately bounded with re-
spect to the bound V,;. Q.E.D.

(6.34) Remark. The essential condition for stability here is that & must be chosen

large enough to make W a M matrix, that is, the designer must choose sufficiently
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stable reference models in order to overcome interconnection disturbances. This
is a stronger requirement than before, where any stable reference model would
guarantee stability. The benefit gained from having enough information to choose
« 1s that a much broader class of interconnection structures in the plant can now
be tolerated.

(6.35) Remark. Earlier results in decentralized adaptive control [22] require that
W be a M matrix, however no design technique is given to assure that W meets
this condition. The proof above suggests that by selecting larger and larger o until
W meets the M matrix condition we can design a stable adaptive control law. The
proof guarantees that a sufficiently large, but finite, a exists. Furthermore, in view

of (6.30) through (6.33), we see that by choosing larger o and I, the residual set

can be made as small as desired.
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7

Application to
Robotics

In this chapter we examine the use of decentralized adaptive schemes for
robot arm joint motion control. The control of robotic manipulators is particularly
challenging because of the highly nonlinear and trajectory dependent dynamics
coupled with the need for fast on-line implementation of the control laws. A
decentralized control design, with one controller dedicated for each joint, is an
attractive approach since such designs can be made robust to the nonlinearities
and they can be implemented with parallel processors for the necessary speed
advantage. Adaptation provides additional robustness to the parametric variations
due to a changing load or arm configuration.

The development of high performance robot arm controllers has been rapid
over the past several years. The earliest designs, known as independent joint
control, use a servo motor and a conventional PID controller at each joint [56].
Such controllers are limited in performance unless the disturbance torques which
interconnect the single joint subsystems are compensated for [34]. In a more
sophisticated design, known as the computed torque technique, the disturbance
torques are explicitly canceled at each joint [35.36). This method, however, re-
quires a complex, nonlinear full-state-feedback control law and is therefore costly
in terms of computer resources. Also, it requires that the inertial characteristics
of the arm and its load be known at all times.

To compenstate for coupling torques, several schemes for enhancing inde-
pendent joint control have been proposed. These include the variable structure
methods [37-40], the acceleration estimation and feedback schemes [41-43], and

the adaptive control schemes [28,29,44-48] A survey of the adaptive robot control
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methods is given in [49)].

The variable structure control methods [38-40] are robust, decentralized,
and simple to implement, (this type of control law is often categorized as model-
referenced adaptive control, apparently because hyperstability arguments are used
in the stability proofs) however, they depend on a high frequency switching control
law, which unfortunately could excite parasitic high frequency modes in a robot
arm. This is to be contrasted with the relatively smooth control, with slowly

varying linear feedback gains, proposed in this thesis.

Acceleration feedback schemes have shown promise in experimental work
[43]. This approach, however, requires either taking numerical derivatives of dis-

crete joint position measurements, or using additional transducers to measure

acceleration directly.

Adaptive independent joint control was first proposed in [44] where, in the
the stability analysis, the effect of the coupling torques was ignored. Since then,
several papers have appeared in the literature which propose adaptive decentral-
ized algorithms (for example, [45], [47], and [28]). For convience in designing the
adaptation rules, only simplified models for the interconnection torques are hy-
pothesized. These simplifications, unfortunately, are not truely representative of
the robot arm’s nonlinear dynamics. For this reason, asymptotic stability of the

adaptive control laws is left in question, although the simulation and experimental

results look encouraging.

In later research on centralized adaptive robot control, the full nonlinear
dynamics are taken into account, and asymptotically stable algorithms have been
developed [50-52]. While these control laws give the desired robustness to para-
metric uncertainties, they are based on the computed torque technique, thus the

decentralized structure of the controller is sacrificed.

To design a stable decentralized robot controller, the nonlinear coupling

terms must be properly taken into account according to the principls of nonlinear

=
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large scale system theory. Vucobratovi¢ and Stokié¢ [53,54] use a large scale systems
approach to show the stabilty and robustness of a (nonadaptive) decentralized law.
Their proposed scheme uses a combination of global and local control where the
global controller uses computed torque to aid in decoupling the subsystems, while
the local controller provides robustness to perturbations. In [46] an adaptation
mechanism is added on for payload identification.

In this chapter, we present an adaptive decentralized control law for robot
joint control, and prove that it has local stability properties. The important
distinctions from earlier results are 1) the control law is completely decentralized
with no global controller necessary, and 2) the stability analysis takes into account
all of the nonlinear coupling terms. It is also important to point out that the
proposed controller does not require acceleration feedback nor does it use high
frequency gain switching.

An important property of robot arm dynamics is that the dynamic interac-
tion torques are within the range space of the control (that is, the conditions (3.1)
are satisfied), therefore, in view of the results of the earlier chapters, we should ex-
pect that local high gain control is sufficient to stabilize the overall system. What
distinguishes robot arms from our earlier systems of interest however, is the fact
that the robot arm system is not tnput-decentralized. That is, when the equations
of motion are written in the state space form (2.3), the B matrix is full, not block
diagonal as has been our assumption up to now This means that the control
torque intended for one joint cross couples to the other joints, and the decentrally
controlled subsystems are thus strongly coupled in a static manner. Fixed, high
gain control laws for decentralized systems with cross-connected inputs are given
in [55]. We extend on that idea, and exploit the special properties of the robot

arm to show that our decentralized adaptive law is stable.

The dynamics of a N joint robot manipulator can be expressed as [56]

J(g, D§+Vi+clg, ¢, )+gtg, =1 (7.1)
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where

¢ = N by 1 vector of joint positions
{ = a parameter vector describing mass and
orientation of payload
J(g, 1) = N by N inertia matrix
V = N by N diagonal viscous friction matrix
c(q, ¢, {) = N by 1 vector defining Coriolis and
centrifugal terms
g(q, 1) = N by 1 vector defining the gravity terms,
and

7 = N by 1 vector of input torques

The parameter vector { may be time-varying, but it is uniformly bounded, reflect-

ing the fact that the arm is designed to handle loads up to a maximum size.

The moment of inertia matrix J(g,!) is always positive definite regardless

of arm configuration or load, therefore its inverse M(q,!) = [J(g,{)]~! exists and

1s also positive definite.

The #th component of Coriolis force has the form

N N
F=1lk=1

where c?jk(q; [) are uniformly bounded functions of ¢ and (.

The gravity force on the ’th joint can be expanded in a power series in ¢;

about the nominal arm configuration ¢ = ¢y and load [ = [ as

9i(¢,) = ¢} + gigi + Gi(q.1) i€N (7.3)

[

Y



where .
9; = gi(qo,10)

' _ agi
g9i = 59—' me (7.4)

t=lg
Gi(¢,0) = gi(¢, 1) — gigi — 97"
We wish to express equation (7.1) in the familiar first order differential
equation form. Defining » = ¢ we have

g=r

_ (7.5)
r=M(gD[-Vr—clgrl)-g(e,)+7]
The positive definite matrix M(q,{) can be decomposed as
M(q,l) = Mp — Mc(q.0) (7.6)

where Mp = diag{m,,my,..., mny}, m; > 0.¢i = 1,2,... N and Mc(q,{) is a
positive semi-definite matrix for all ¢ and {. Thus
F=[Mp+ Mc(¢.0][-Vr—clq.r 1) - g(g. 1) + 7]
=—-MpVr—- Mpe(q.7.1) = Mpg(q,)) + Mpr (7.7)

+ Mc(g, ) [-Vr—c(g.rl)~g(q.0)+7].
Substituting (7.3) and writing the equation explicitly for each joint we have

¢ =7

o = = Migigi — Mivir, + myT,

M (7.8)
+ midi + mifi(qs L I) + 2‘ mij(q) I)TJ

j=1
ieN

where v; is the i’th diagonal element of V', m,; is the 7, j element of Mc and
N
di= g0 =mt ) mg]
=1
filg,r, ) = = [ci(g,r, ) + §i(g, )]

N
—m7 Yy {mii(g, 095 + mij (g, D) [vjr, +ci(a,m 1) + gjg; + G5(a, D]}
i=1

ieN
(7.9)
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where mY; = my;(qo, lo) and My;(g,{) = mij(g,1) - m{;. In (7.8) d; represents the
constant gravity disturbance at the nominal configuration and fi(q, 7, 1) represents
homogeneous interconnection forces, that is f;(¢o,0,lp) =0 fori € N.

To attain a system representation similar to that studied in Chapter 3,

we define the subsystem state vectors z; = (¢ — ¢oi,™i)7, the overall system
state vector r = (:L'T,:c{,...,xﬁ)T € R", the local control variables u; = 7,
and overall control vector u = (u1,us, .., uny)?. Also, we now use the notation

fi(t,z) to mean fi(q,r,{) where t € R™ denotes the independent time variable.
This reflects the use of the state vector = in place of ¢, 7, and the fact that the
load { may be time-varying. The function f;(¢,£) : R™* x R2N — R is continuous
and homogeneous in z and piecewise continuous in . Also, we now use b;;(¢,z)
to denote m,-'lm,-j(q,l). The function b;;(t,z) - R™ x RN — R is uniformly

bounded and continuous in both of its arguments. We can now rewrite (7.8) as

N
S & = Aizi + bui + b [fi(t, ) + }:bii(t‘w)uj +d] i€N (7.10)

j=t

A= (—Tgigi —"iiv-> b= ('?'s) ' (7.11)

For a robot arm, the functions fi(-,-). b;;(-. ) are sufficiently smooth to assure

where

unique solutions z(¢;tq, z(¢¢)) to (7.10) for piecewise continuous inputs u;(t). Also
there exists a unique equilibrium point at £ = ( when u, = ¢°, Vi € N.
Comparing (7.10) to (2.1) and (3.1) we see that the robot system is similar
to the system treated in Chapter 3, however, two additional disturbance terms
appear. These additional terms represent the coupling of control torques among

the joints and the constant disturbance due to gravity.

(7.12)Remark. Dynamic interactions among the single joint subsystems are
caused by the nonlinear functions f;({ ). These interaction disturbances en-

ter the subsystems through the range space of b,. However, unlike before, the
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interconnection function, f;(¢,z) is not conically bounded as in (2.6). In view of
(7.2) and (7.9) we see that Coriolis and centrifugal forces cause the interconnec-

tion torques to behave as guadratic functions of joint velocity r. Thus we have the

relation

N
(o)l < il ; 2'f‘ ij 11T
I £i )n_; Mzl + 8ijll=; i (113)

Vit,z) e RxR*®™ ieN

(7.14)Remark. Also unlike before, control signals interact in a time-dependent
manner through the interaction matrix Be(t,z) = [bi;(t.z)) = M5 Mc(g.1).
Two important facts about this interaction, characteristic of robot arms and other
mechanical systems of the type (7.1), should be noted. First of all, the interaction
of controls is through the range space of 4,. Secondly, Mp is a diagonal matrix
with positive elements and M (q,!) is positive semi-definite, thus the interaction

matrix B¢ 1s positive semi-definite. We will exploit both these conditions in the

proof of stability.

The control objective is to follow the reference model

Mi . imi = Amixmi + bmirml ieN (715)
where
Ami = Ai + bkIT . by = bk, (7.16)

and k] and kg, are the model-matching gain settings.

The proposed decentralized adaptive control law is
u; = 9,-TV,- r€N (7.17)

where
0;(t) = (koi(t), kT (). kri())! € R® (7.18)
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are the adapted, time-varying, estimates of the model-matching gains, and
vi(t) = (ri, el , )T € R® (7.19)

are the regressor signals, where ¢; = z, — z,,;. Note that we have added an
additional signal kr;(¢) in the feedback law. This signal will act as an integral
feedback term to cancel the constant disturbance d;. The matching setting of
kri(t) is ky;, = —d;.

The adaptation law is then

6; = —Ti(kle)vs — oTi(6i + pb;) i€ N (7.20)

where k; is defined by (3.3), (3.4), 8; = (0,kF,0)T, I; is a 4 x 4 positive definite

matrix, and o and p are positive design constants.
Defining 6* = (kg;, k7", k}.)T and ¢ = 6 - 6* and subtracting (7.15) from

(7.10) we have the error differential equations
Sei 6 =Amiei + b [¢Tvi — ki T zomi

N
+ A2+ Yobyt, ) 6Ty + 6Tr)] ieN  (12D)
i=1
4'5,' = - O’I‘,‘(b.' - 01‘,‘0: - O'F,'po‘,' - F.-(l?:?e.—)u.-
We denote (e, ) € R*M x RV as the state of S..
(7.22) Theorem. There exists an attraction set Q C R*Y x R*N such that if the

initial condition (eq, ¢g) is within 2, then the solutions (e, ¢)(¢; to, €0, $o) of S, are
ultimately bounded.

Proof. Define the positive function

Zko. el Hie; + (6i + p0:)TT 7 (9i + pbi) (7.23)

where H; is the positive definite matrix that satisfies (3.3). We specify a domain

of attraction as Q = {(e,¢) : V(e,$) < Vp} where V; is a positive number. By
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this definition, §2 is a compact set, therefore, for all (e, ¢) € Q

ll¢: + pBil| <&:

N
At D) <D &ledll + laml))
i=1

(7.24)
I1bi; (¢, 2)1] <bi;
i€ N, (e,9)eQ
where ) )
& = sup [l¢ + o8|l = Vo P NfZ(D)
Q
§ij = e+ sup lzmi (DI} + Bi,
, (7.25)
e = supl|le|| = Val’z)\,;il,fz{fﬂ
Q
bi; = sup ||bi; (¢, )|l
R+
and H = diag{k§;H, kisHa, .. kinHN}. ' = diag{l},Ty,...,['n},
e=(eT,el,. . 0T, ¢ =(¢T,¢T,... 657, and 6 = (67.67,...,60)7.

We now take the total time derivative of V' (¢, #) along solutions of S. to get

N
V(e,¢)(7_21) = Z { - kal-CTG,'e,‘ - 28?E,k:TIm, + QCITE,'f,'(t,l‘)

i=1

N
+ 26?’;‘,’ Zb,‘j(t,l‘) [H;TUJ' + (¢J -+ pgj )TI/J' - pg—JTVJ'] - QPC‘TE.'E;TQ
j=

~ 2i + p0)T (B + pBi) — 2y + p0,)" 0} }
V(t,e,$) € R x Q.

(7.26)
Using the block notation introduced in Chapter 3,
V(e, P)(r21) = —eTGe —2TKT K"z, + QeT[_{Tf(t, z)
+ QCTI—(TBc(B' + o+ p0T v
~20eT KTBcOT v — 2pe" KT Ke (7.27)

— 20(¢ + p0)T (¢ + pb) — 20(¢ + p0)" 6"
Y(t,e,9) € R x S
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Note, from (7.25) that
l16* + ¢+ pBl) < |I6°]1 + & (7.28)

and
el < llrll + llell + M), (7.29)
and also, using the definition of 8,
0Ty = Ke. (7.30)

By completing the square, we also have

—20(¢ + p8)T (8 + pb) - 20(¢ + p0)T 8" =

(7.31)
~ ollg + pblI* - allo + 8 + 6°|1* + ol[6"]|*.
Now, substituting the above into (7.27) and taking norms we get
Ve, ¢)(7.21) = —¢” Ge + 2|| Kell|[| K" z | + 2l Kell] £
+ 2| KellllBeI18*1 + @)l + llell + N)
—20eTKTB:Ke - 2p||Kel|? (7.32)

~oll¢ + P8I + oll6" |
Y(t,e,4) € R x Q.
Since B is positive semi-definite (see Remark (7.14)), the term —2peT KT Bc Ke

can be dropped from the right hand side of the inequality, since it is never positive.

Now, using (7.24) ||f(¢, 2)|| < &(|le]l + ||zm]]). and ||Bc|| < b for some positive

constants € and b, so we have

V(e ¢)(7.21) < — eTGe — 2p||Kel|® + 2|| Ke||| K* zum |
+ 2| Kell(lle]l + lzm]])
+ 26| Kel[(ll6*]] + &)lIrll + [lell + ) (7.33)
—ollé + o|* + oll67||*
(i, e, ) €ER x Q.
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Completing the square involving || Ke||, and dropping the negative term, we finally

get _ ) B
V(e,¢)721) < = {Mmin(G) = p7 e + 0([|6%|| + )1} lell®

_ . T g <12
+ o7 I+ €+ b(l19° 1] + 9)]
- alle + p8)|* ~ o|l6*|?
V(t,e.¢) € R x Q,
where x = max {sup, [lzm(DII%, (sup, llrm (D)l + N)2}.
Equation (7.34) can be written compactly as
Ve, B)(7.21) < —(|lell*~elle + pBI> + 7
V(t.e.p) €ER x
where the constants { and n are defined
- : - ]2
¢ = Amin(G) = p7*[€ + ([|6"]} + #)]
- — L] 3 L] 7y} 2
n=oll0*)1* + p~ x [IIK|| + €+ b(I[6" ]| + 6)] "
Selecting p large enough so that ¢ > 0, we see that (7.35) implies

Ve, $)7.21) < — Ve, 8) +n
Y(l,e,¢) € R x Q,

where the positive number u is given by

# < min [)\,;;x(H)C, Amin(F)cr] .

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

From (7.37) we see that V(e,q&)(ml) < 0if (e,¢) € Q and Ve, ¢) > V; where

Vi=p "n.

(7.39)

V; can be made as small as desired by selecting a sufficiently large p, sufficiently

small o and sufficiently large I';. By this design, we make V; < Vj, and thereby
create a region {(e,¢) € Q : Vo > V(e, ) > Vs} where Vl’e,d:)g_z]) < 0. Using
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Liapunov stability theory, we can thus conclude that solution trajectories for S.

that start in Q ultimately end up in the compact set 2y defined by
Q = {(e,4) €Q: V(e,8) <V} (7.40)

Therefore, the solutions (e, ¢)(¢; %0, €0, o) of S. are locally ultimately bounded
with respect to the bound V; and the local region Q2. Q.E.D.

The choice of the constants ¢, I';, and p to satisfy the conditions of Theorem
(7.22) is not immediately obvious since £ and ¢ depend on the chosen I'. We show
here a constructive technique for selecting these constants appropriately. The
technique is based on first choosing ¢ and T, under the assumption that p = oc.
Then we choose a finite value for p, sufficiently large that V; is smaller than V;.

Assume that our intention is to have
Vy < eV (7.41)

for given positive constants Vg, V;, and 0 < ¢ < |. We now choose

/\min(G)

o < eV, 7.42
= PO X ENTP (42
and any I' > 0 such that
1l
Ami > )
m n(F) paily fV[) (7 43)

and, for the moment, we let p = 0o. Substituting into (7.36)—(7.39), it follows
that (7.41) is satisfied.

Given the above choices for o and I', we can now calculate

6 = Vo P NL3D)
) (7.44)
e= Vo'
and thus
£ =ae+p. (745)
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Let us now choose a finite value for p. Let
p = pomax {A71(G)[€ + b(1l6"]| + 6],
- wi]— - 1 - 7372
oMol 2x (Il + € + B(llo"ll + #)]° }

where pg is a finite positive number. Substituting into (7.36), we have
¢> (1= pg ) Amin(G)
n < (1+pgell6”)

and, using (7.42) and (7.43),

_ 0'0 2

Thus, from (7.39)

Therefore, if we choose the number pg such that

1+ ¢
Po>‘1——
- €

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)

then V; < V; and the constants are appropriately chosen to satisfy the require-

ments of Theorem (7.22).

Note that our original intention was to have 1; < ¢V4. The argument above

shows that this inequality can be very nearly satisfied by choosing pp > 1. To

show that we can select constants to satisfy (7.41) strictly for any given ¢, we select

any pg > 1 and substitute into the formulas

6(1 - Po ) VO)\mm(G)
(L4 pg ") Amax(H)II6"|}2
(L+pg7) o=}
(1-pp') Y

é= v‘”,\l/2 2()

)‘min(r) z

e= Vo AL (H)
E=aé+f
p> pomax {Amm G)[€ + (6" 1| + 8)]°.
o le" 2 Il + € + blle 1t + #)° }
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to give the required constants, o, I', and p. Substituting the above into (7.36)—
(7.39), we see that equation (7.41) is now strictly satisfied (V; < €V;). Thus we
have proven by construction that a local stability region and residual set exist,

and that the size of the residual set can be made arbitrarily small by appropriate

choice of design constants.

(7.52) Example. As a simple example, consider the N = 2 case. Assume that

the constants describing the plant and interconnection strengths are &j;, = 1,

a=1/100, 83 = 1/100, b = 1/100. Let

Am.:(_(_)l _12> b""':<(1)>

1 0 15 05 1=1,2 (7.53)

Gi= (0 1)’ He= (045 0.5)
as in Chapter 3. Assume, for our example here, that this implies ||6°]| = 1,
and also assume that the reference model trajectory obeys sup, ||z (t)]| = 1 and

sup, |lrm(t)|| = 1. Thus x = 9. Choose Vy = 100, V; = 1 (thus ¢ = 0.01), and
po = 2. Using (7.51) we have

o =0.195
I' =3.00/
¢ =17.3
(7.54)
e =185
£ =0.195
p =175

which completes our example.

(7.55) Remark. As in the state feedback case covered in Chapter 3, we find that
there is a tradeof between small tracking errors and large gains. This time, how-

ever, 1t 1s necessary for the designer to specify g, since it is used in the adaptation

law (7.20).
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(7.56)Remark. Many commercial robot arms use servo motors that drive the
joints through a series of gears. If the gear ratio is high, then the inertia matrix
J(g,1) will be dominated by large elements along the diagonal. The net effect is
that the subsystem interconnection strengths, represented by the constants «, 3,
b will be very small: on the order of the inverse of the gear ratio squared. For
example, the PUMA robot arm (described in the next chapter) has gear ratios of
approximately 100. In such cases, the decentralized adaptive control design will
require only a very small value for p. In direct drive arms, such as Carnege-Mellon’s
DDII, there are no gears (the “gear ratio” equals one) so the interconnections are

quite strong and a relatively high value for p is required.

(7.57) Remark. The method (7.51) of choosing constants for Theorem (7.22)
can not be used as a design technique when we presume that a-prior: information
about the plant parameters #* and interconnection strengths «, 3, and b is not
available. In practice, however, upper bounds on these values may be known, and
rational design choices must be made. An understanding of the roles of the design
constants can help the designer to adjust them. The designer should keep in mind
the fact that I'; acts as an adaptive “attack” constant, determing the rate of gain
adaptation per given level of tracking error. Also, o is a “decay” constant, which
provides a fading memory for the adaptive mechanism. Finally, p is the high

gain parameter, with pd; being the nominal gain setting around which adaptation

occurs.
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8

Experiments
with the PUMA arm

In this chapter we present the results of motion control experiments with the
PUMA robot arm at the U. C. Davis Robotics Research Laboratory. We controled
the robot arm using the high gain decentralized adaptive controller presented in
this thesis, and also, in comparison experiments, we controlled the arm using
a non-adaptive decentralized control scheme. We did not experiment with any
centralized control laws because of the limited capability of the on-line control
computer.

The results from three PUMA arm motion experiments are presented and
discussed below. We selected arm trajectories which tend to induce a high degree
of dynamic coupling between the joints thus testing the ability of the decentralized
adaptive controller to reject interconnection disturbances. The first experiment
was designed to demonstrate the torque intercoupling due to centrifugal forces
ci(g,¢,1). The last two experiments demonstrate inertial intercoupling, that is,
due to the off diagonal elements of J(g, ).

Figure 8.1 is a drawing of the PUMA arm, indicating the rotation senses
of each of the six joints. We are concerned here with the first three joints, waist,
elbow, and shoulder, since they exhibit the highest degree of intercoupling due to
large link inertias and non-orthogonal rotation axes. Figure 8.2 shows the arm in
the zero configuration (straight up). The arm is driven by servo motors mounted
at each joint, and joint position is read from an optical encoder mounted on each
motor shaft. Joint velocities must be computed within the control processor given

periodic position information.

We have modified the factory provided PUMA system by replacing the con-
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trol processor with our own INTEL 286 processor and UNIX operating system,
allowing us to easily program experimental control algorithms [57]. The experi-
ments described below were run at a sample rate of 100 hertz.

The optically encoded position signal has a resolution of one count. There
are approximately 60,000 index counts over the full range of motion for each joint,
thus one count corresponds to approximately 2x /60, 000 = 0.1 milliradian of joint
motion. We will use these counts as the units of joint position in the disscussion
that follows. The motors are DC servos with 300 ounce-inch maximum torque.
The control signal from the computer is from a digital to analog converter which
translates an integer ranging from -32,000 to +32,000 to a motor drive voltage
that ranges from -40 to +40 volts, giving a full range of available torque. We will
use the control integer from the computer as the unit for control signals. Keep in
mind that saturation occurs at +32, 000.

The experiment trajectories are shown in Figure 8.3 a, b, and ¢. Each
trajectory was run in both an adaptive and a non-adaptive mode, and in all cases,
both control laws caused the arm to follow the given trajectory within a few
hundred counts, which is indistinguishable on the scale of Figure 8.3.

For the adaptive experiments, tracking error is defined by

where ¢, is the #’th robot joint angle and ¢, is the 7’th joint angle in the reference

model. The reference model can be written in the second order form as

Gmi + a8 ;4mi + @ qmi = Tmi(t), i€ {1,2,3) (8.2)

which corresponds to the first order form (7.15) with z,,; = (¢mi, dmi)* and

Ami'—'(_gfm _:d) bm,-=<(1):) i€ {1,2,3). (8.3)

mi

The adaptive control law is given by

n(t) = —R(Deit) — KO0 - k(D) i€ {1,2,3) (8.4)

70



where 7i(t) is the control torque for joint i. The rules for adapting k¥ (t), k&(¢),
and ki(t) are
kP = yPei(t)ei — of 4P [k (2) — KE(0)]
k¢ = yde;(t)e; — ofv3[k3(1) — k3(0)] i€ {1,2,3} (8.5)
K = vie(t) - olri[ki(2) — ki(0)]
where
&i(t) = Klei(t) + kles(t) i€ {1,2,3), (8.6)

kP (0), k2(0), and k!(0) are initial settings for the adapted gains, R e

of, and o} are positive design constants, and k and k¢ are constants chosen by

the designer so as to satisfy (3.3) and (3.4), where k; = (kf, k)T. We chose
al . =225 a3,=30, ie{1,2 3} (8.7)

so that each joints reference model has a double pole at s = —15 sec™!. With this

choice, equations (3.3) and (3.4) are satisfied with the positive definite matrices

6750 0 675 15 .
6= (0 0), me (T YY) icpan  ws

and

K =15 ki=1 ie{1,2,3). (8.9)

The adaptation constants were selected, using the heuristic rules outlined in re-

mark (7.52), as

i€{1,2,3} (8.10)

In the nonadaptive experiments, a proportional integral derivative (PID)

controller was used. The tracking error in this case is defined as

ei(t) = qi(t) — qaitt) i€ {1.2,3} (8.11)
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where ¢q4;i(t) is the desired trajectory. The PID controller’s desired trajectory is
simply a scaled version of the adaptive controller’s reference model input, ¢4 (t) =
rmi/ab,.. This is so that the desired robot arm motion is the same for both types

of controllers. The PID control law for each joint 1s given by
= —kle, — ké; — k! f;

_ i€ {123} (8.12)
fi=¢

where k¥, k!, and k2 are the fixed proportional, integral and derivative gains,
respectively. The gain settings were determined experimentally by a graduate

student who is a veteran at tuning PID laws from past work experience:
kK =130, kb =180, &5 =110
k% =270, k% =270. k3§ =120 (8.13)
V=07, k=07 ky=07

The values shown above were also used for the initial gains &7 (0) and k¢(0) in the
adaptive experiments. Before each experiment, the robot was held motionless for
a few seconds to allow the integrator states (k! in the adaptive law, and f; in the
non adaptive law) to settle. This was to ensure consistency in comparison runs.

We now describe each of the experiments 1n turn.

Experiment 1 is a high speed twisting motion of the waist joint with the
shoulder and elbow joints maintained in the L position. The trajectory is plotted in
Figure 8.3(a). The starting arm position is shown in Figure 8.4. The waist motion
induces a centrifugal force on the forearm link, causing a disturbance torque at
the elbow joint. (Note that during this experiment the elbow joint was actually
moving very slowly. This was done in order that restoring torques due to static
friction in the elbow gear train do not dominate torques due to centrifugal force
on the forearm. Experiments with the elbow held steady revealed exactly zero
tracking error at the elbow joint for both adaptive and non-adaptive control laws.)

Refering to plots of tracking error in Figure 3.5(a), we see that adaptation causes
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the elbow joint to track more accurately. Figure 8.5(b) shows the position feedback
gain adjustments. Note that, in addition to centrifugal forces, the abrupt halt in
waist motion at ¢t = 0.8 seconds (see Figure 8.3(a)) caused a brief disturbance
pulse (Figure 8.5(a), at ¢t = 0.8 seconds). The disturbance is more evident in the

tracking error associated with non adaptive control than with adaptive control.

Experiments 2 and 3 are designed to demonstrate that control torques at the
elbow joint are coupled to the shoulder. Even though shoulder motion is identical
in both cases, shoulder tracking performance can be quite different depending on

the elbow motion. Adaptation helps t¢ decouple the motions.

Experiment 2 is a lifting motion with both the shoulder and elbow joint
starting from the straight out position (Figure 8.3(b) shows the trajectory and
Figure 8.6 shows the starting position). The combination of gravity forces and the
torque necessary at the elbow joint to lift the forearm causes a large disturbance
torque, in the positive rotation direction, at the shoulder joint. Tracking results
for both adaptive and non-adaptive controllers are shown in Figure 8.7(a). Note
that the adaptive controller 1s much better at :anceling the disturbance torques,

and does so by increasing the feedback gains (Figure 8.7(b)).

Experiment 3 is identical to experiment 2, except that the forearm (elbow
Joint) is dropped instead of lifted (Figure 8.3(c) shows the trajectory and Figure
8.8 shows the starting position). In this case, the torque applied at the elbow joint
is coupled to the shoulder joint in the negative rotation direction. This tends to
cancel the gravity disturbance which is felt in the positive rotation direction. The
result is that the total disturbance torque at the shoulder is small. From Figure
8.9(a) we see that both the non-adaptive and adaptive controllers have about the

same tracking error performance and that adaptive gains (Figure 8.9(b)) adjust

to much lower values than before.

Through these experiments, we have demonstrated the feasibility of decen-

tralized adaptive control of a robot arm. The experimental results show that the
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adaptation mechanism tends to decouple the joint dynamics through the use of
high feedback gains, as predicted by the analysis of the earlier chapters. For ex-
ample, in experiment 2, when the motion of the elbow joint strongly interacted
with the motion of the shoulder joint, the shoulder joint gains increased to help
keep the shoulder tracking error small.

We have also shown that the adaptation mechanism refrains from using high
gains when they are not necessary. This behavior was demonstrated in experiment
3, where the trajectory happened to be one where disturbance torques canceled

and gains remained at modest values.
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Figure 8.1. PUMA robot arm.
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Figure 8.2. PUMA arm in zero configuration.
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Figure 8.4. Experirhent 1. waist twist.
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Figure 8.5. Experiment 1: a) tracking errors. b) position gains.
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Figure 8.6. Experimént 2: lifting motion.
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Figure 8.8. Experiment 3: dropping motion.
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9

Conclusion

In this thesis we have developed decentralized adaptive controllers for sev-
eral classes of nonlinear large scale interconnected systems. The theory is been
based on the high gain stabilization techniques employed in [3-7] for decentrally
stabilizable systems. The contribution of this thesis is the on-line adapttve imple-
mentation of these techniques using a munimum of a-priort knowledge about the
plant.

We first focused on an important subset of the decentrally stabilizable non-
linear systems, those where the interconnection disturbances enter the subsystems
through the range space of the controls. We derived the full state feedback decen-
tralized adaptive regulator and discovered that it is the same law as that proposed
by Ioannou [22]. The decentralized model-following tracker, however, requires a
different set of regressors (3.22) in order to assure stability in the presence of
strong interconnections. Simulations of a strongly coupled dual pendulum system
demonstrated the superior tracking performance >f the newly proposed algorithm.

An important result of the analysis of this class of decentralized adaptive
control laws is that stability is assured regardless of interconnection strengths.
Feedback gains automatically adjust to whatever level is necessary in order to
cancel the disturbance sufficiently.

Next we presented an adaptive controller for the special case where subsys-
tem dynamics are known, but interconnection strengths are not. In this case, only
one adapted parameter per subsystem is necessary. As to be expected from using
increased knowledge of the system, simulations showed better tracking response

with this algorithm than with the other ones that assumed no knowledge of the

plant.
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An extension of the adaptive tracking algorithms to the output feedback
case was then presented. We derived a stable decentralized control law for the
class of output-feedback decentrally stabilizable systems studied in [7]. The control
law employs pre- and post- compensators to make up for the lack of full state
information. In closed loop, the presence of the prefilter upsets the range space
assumption exploited in the state feedback case. This range condition is recovered
however by reflecting interconnection disturbances to the input of the closed loop
system through the stable inverse of the prefilter. Overall stability can then be
proved using a heirarchically coupled subsystems approach. Simulations of the
output feedback controller show similar steady state tracking error as in the state
feedback case but, during the initial transient period. tracking errors are worse

than before, probably due to the fact that the pre- and post- compensators require

some time to settle.

In Chapter 6 we introduced adaptive controllers to the wider class of decen-
trally stabilizable large scale systems reported in [6]. Since in this case, we relaxed
the earlier range space condition, it was necessary to make more a-priort knowl-
edge assumptions in order to derive a stable adaptive control law. In particular, it
was found necessary that the designer provide sufficiently stable reference models

to assure overall stability. This choice must take wnto account upper bounds on

interconnection strengths.

Finally, we derived a decentralized adaptive state feedback control law for
robot motion control. It was shown that the natural subsystems of a robot manip-
ulator, which are the individual joints with their respective servo motors, do not
form an input-decentralized system, that is, control torques applied to one joint
cross couple as disturbance torques at other joints. We then formulated a locally
stable decentralized adaptive control law for the non input-decentralized systems

and gave an example for choosing design constants to assure a finite stability

region.
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The robot arm adaptive controller of Chapter 7 has been implemented on a
PUMA arm at the U. C. Davis Robotics Research Laboratory. Experiments have
shown that the varying interconnection strengths due to changing arm configura-
tion and joint velocities can signifigantly affect the independent joint dynamics.
For this reason, local PID loops with fixed gains will result in varying tracking per-
formance. Under adaptive control, the arm exhibited a more decoupled behavior,
since adapted gains increased to cancel the strong interconnection disturbances,

and decreased when the distrubances were small
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A
Large Scale Systems

In this appendix, we provide a tutorial introduction to the theory of large
scale systems. The material presented here forms the basis of the theory developed
in the main part of the thesis. The reader is also encouraged to consult the relevant

texts in the area [25,58] for more details.

The design of a decentralized controller has two principle stages. First the
large scale system must be decomposed into component subsystems. Second the
local controllers for the subsystems must be designed so as to stabilize the over-
all system. The first step, that of decomposition, can be accomplished along the
natual divisions occuring within the system, that is, between the obvious subsys-
tems which arise in the model. For example, in the case of a robot arm, each
joint, with its servo motor, is a natural subsystem. Alternatively, mathematical
subsystems can be created by grouping system equations so as to give the most
convenient interconnection structure. Such an approach been studied extensively
[59,60]. An important goal of the decomposition process is to make the subse-
quent job of control design as easy as possible. The interconnection structure, as
well as the strength of the interconnections, will determine whether the resulting

decompostion is decentrally controllable.

This thesis is concerned mostly with the second step of the process, that of
local controller design. We seek to find control laws which, although applied lo-

cally, using only locally available information, will nevertheless stabilize the overall

interconnected large scale system.

We consider the large scale system S as consisting of an interconnection

of N smaller subsystems S;, where i = 1,2, ... N. Denoting the index set N =
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{1,2,...,N}, the interconneced system is described by

¢ = Aizi + P fi(t, 2) + Biu,
S;: t€N (A.2)
vi = Cizs,
where z; € R™ are the subsystem state vectors, y; € R'* are the measurable
subsystem outputs, u; € R™' are the available subsystem control inputs, and
A;, B; and P, are constant matrices of dimensions n; x n;, n; X m;, and n; x p;
respectively. We define z = (7,27, . z%)T & R" as the overall system state
vector, and assume that the functions f, : R x R™ — RP: are sufficiently smooth
so that the solution z(¢ : tg, o) of S 1s unique for all initial conditions (%o, z¢) €
R x R"™ and all piece-wise continuous inputs u(-). It is assumed that the functions

fi(t, z) obey the inequalities

N
it o) <) mlleill - Yt z)eR xR ieN (A.3)
=1

for some positive constants 7,;,¢,j € N.

It is desired to stabilize the overall system S with local feedback control. If

the full state of the system is available, the control law is of the form
u = — Iz teN (A4)

where K; 1s a constant m; x n; matrix This results in the closed-loop system

. z; = Ajz, + P, fi(r)
8, - ieN. (A5)
Yi =Ci1'l

where 4, = (A; — BiK;). If only the outputs, y;. are available for feedback. we

use dynamic compensators of the form

zi = Fiz + Ry,
C, - ieN (A.6)
U = =8z, — D,y
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where z; € R™, and F;, R;, S;, and D; are matrices of appropriate dumension.

This results in the closed-loop dynamic system
S;: ieN (A7)

where z; = (z7,27)T, and

A‘ _ A; — BD,C;, —-HKiH;
v S,C, E,
5 (B (A.B)
()
Ci=(Ci 0)

The control design process involves the proper choice of state feedback matrices,
K;, or compensator matrices Fy, R, S, and D

For the purpose of discussion, we focus attention on the case where state
feedback is used. The following arguments apply equally as well to the feedback
compensator case, however, simply by substituting z; for z,, P, for P;, etc. in the
equations below. To determine whether or not the large scale system, S is stable.
we introduce the vector Liapunov function »(x) = (vi(z1),v2(Z2), - - -, vN(:cN))T‘
where each scalar function v; - R™ — R is a positive definite function of the

subsystem state, Z;:

vi(z;) =zl Hiz;, i€N (A.9)
where H; are positive definite n; x n; solution matrices to the Liapunov equations
ATH, + HiAi= -G, i€N (A.10)

for any given positive definite matrices G;.

Next, we form a candidate scalar Liapunov function

Vicg) = d'v(x) (A.11)
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where d = (d;,d2, . .. ,dn)T is a vector of positive constants. The system S is
then globally asymptotically stable if a vector d can be found such that V(z) is a
Liapunov function for the system S, that s, dT(z) < 0 for all (¢,z) € R x R"™.

The advantage of the vector Liapunov approach is that each vi(z;) rep-
resents an aggregation of that subsystem’s behavior. The linear combination of
these aggregates, V(z) = d7v(z), then forms the aggregation of overall system’s
behavior. The d; are free parameters to be chosen 1n any way possible to make
V(z) a Liapunov function.

Proceeding now to the selection of d, we take the total derivative of V(&)

along solutions of S (A.5) to get

N
V(:L‘)(A_5) = Zd,‘[—- :C?G.'.’.L’.' + 21‘?HiPi_f((17)] vreR". (Al?)

1i=1

Substituting inequality (A.3) we get

N N
V(z)as) <D di] = Amin(Gi)llz:ll* + > 20 i Pl ll=allllzs]l] V2 € R
i=1 ji=1

(A.13)

where Apin(-) denotes the minimum eigenvalue of the indicated matrix, and il
denotes the Euclidean norm of a vector, or the spectral norm if the argument is a

matrix. Inequality (A.13) can be rewritten as

N N
Vi(z)as) < QZdi)\max(H.')[ — mifla ) + Z &, llzillllz;l]] Vz € R™ (A.14)

i=1 1=

where
- 1 Amin((;i)
= 2 Mo () 1 €N (A.15)
and
& = ||Hillm; ¢Jj€N. (A.16)

We now define the N x N matrix. W = [w;;] by
mi—& 1= . , -
Wiy = {—E.-j iz UJEN (4.17)
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and define x = (||z1]], ||z2|l, - - -, [[z~]])T . Inequality (A.14) now becomes
V(z)as) < —xT(DW + WTD)x vz eR" (A.18)

where D = diag{d) Amax(H1), d2odmax(Hz2), ., dxnAmax(HN)}.

In order to make the right hand side of (A.18) negative definite, we need
to look for conditions under which a positive diagonal matrix D can be found to
make the matrix H = (DW + WT D) positive definite. Such a D can always be
constructed if W is a M matrix, as defined in [25]. We summarize below the
properties of M matrices, then prove the assertion that H is positive definite if
W is an M matrix.

Let W be a square matrix with all off diagonal elements being non-positive.

W is defined to be an M matrix if it satisfies the property:

Property 1. The Leading principal minor determinants of W are all positive, that

1S

wyp wiz .. Wig
Wz W22 ... Wk

. >0 VvVkeN (A.19)
|wk1 Wg2 .. Wik

Property 1 is equivalent to each of the following properties [25].

Property 2. There is a positive vector ¢ > 0 such that ¢’ = Wg > 0 (by ¢ > 0 we

mean that each element of the vector is positive)
Property 8. There is a positive vector A > 0 such that ' = WTh > 0.
Property 4. The real part of each eigenvector of W 1s positive.

We can now show that if W is an M matrix, H = DW + WT D is positive
definite. The following proof is due to Araki and Kondo [61]. According to prop-
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erties 2 and 3, there are two positive vectors ¢ > 0 and A > 0 so that ¢’ = Wg > 0
and b = WTh > 0. We set d; = AL (H,)h;/¢i, where h; > 0 and g; > 0 are the

t’'th components of A and g respectively. Then

By construction, H is symmetric and has non-negative off diagonal elements. The
right hand side of (A.20) is positive, therefore Hg is positive. Property 2 is thus
satisfied and H is therefore an M matrix. Since H is symimnetric, it has all real
eigenvalues. Because of property 4 the eigenvalues of H are all positive, therefore,
H 1s positive definite.

With H being positive definite, the right hand side of inequality (A.18) is
negative, and thus V(z) is a Liapunov function for S. Thus a sufficient condition
for stability of the decentrally controlled large scale system S is that W is an M
matrix.

We may not always be able to find local feedback gains K; such that W
is an M matrix. This is usually a hit or miss design process. However, there
are some situations where stabilizing designs can be directly constructed. One of
these is where interconnection disturbances enter the range space of the control

variables, that is, in (A.2) the matrix P; can be factored as
Pi=BF 1€eN (A.21)
In that case, we use the control
w = ~K;z; — pBTH;a;, i€N (A.22)

where p is a positive design constant to be assigned below. We now let the candi-

date Liapunov function be defined

Vi(z) = D wila) (4.23)

1=1
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and take its total time derivative with respect to (A.2), (A.22) to get

N
V(:L‘) (A.2), = E [ - :L‘TG.':B,' - 2p1’,—TH.'B,'B,-TH.'.’L‘.' + 2.’!,‘,-TH.'B,'}3,'f|'($)] Vz € Rn.

(A.22) =
(A.24)
Now, complete the square involving the last two terms on the right hand side to

get

N
V(:L‘) (A.2), = Z [ - :L‘,TG,'Z‘,' - p:c,TH,-B,-B;TH,-:c.-
i=1

(A.23)
= p2(HiBi ~ p™' P fi(@)[T [HiB; — p~' B fi(2))z (A.25)
+p I (2)PT P, fi(2)]
VzeR".

Employing inequality (A.3), and dropping negative terms on the right hand side,

we have

N N
V(2) an, =) [~ 2T Giz; + 2 PRI ms sl 1]
i=1

(3 T & (A.26)
Yo e R™.

or

V() a, < -xT(G -4~ 'P)x VzeR" (A.27)
(A.22)

where G = diag{Amin(G1), Muin(Ga), . .., Amin(Gn)} and P = [||ﬁ,-||2n.-,-]. In
(A.27) we can choose p sufficiently large to make the matrix (G = p71P) positive
definite, thereby making the right hand side less than zero. Therefore V(z)is a
Lyapunov function for the system (A.2), (A 22) (with sufficiently large p), and the
system is stable.

We have thus shown that if interconnection disturbances enter within the
range space of the controls, high gain decentralized feedback of the form (A.22)
can stabilize the overall system. This is (he basis by which we prove the stability

of the adaptive algorithms in Chapters 3 and 5.
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B
Adaptive Control

In this appendix we develop the theory of model-reference adaptive control
while ignoring any disturbance or destabilizing effect of interconnections between
subsystems. The purpose is to demonstrate the design technique without the
added complications due to interconnections 'Che basis for this matrial can be
found in the papers by Parks [9] and Monopoli 11}

We consider the isolated, single-input single-output system described by

S: = Az + bu

(B.1)
y=cTz

where z(f) € R", u(t) € R and y(t) € R are the state, input, and output of S
respectively at time t € R, A is a constant n x » matrix, and b, and ¢ are constant
vectors of length n. For the sake of simplicity in the arguments that follow, we

assume that the pair (A4,b) is in controllable cannonical form, that is

0 1 0 . 0 0
A= 0 0 1 0 b= :
0 (B.2)
—a —a2 —az . —Qn b,
T _
c = ( c1 C2 ... Cp).
but that the 2n + 1 constant coefficients {a;. ay . ., a,, by, ¢1, c2, ..., ¢, } are

not known by the designer, hence the need for an adaptive control law.

The control objective is to either regulate the state, z(¢) of the system to
zero, or to force r(t) to track the state of a given reference model. The model for
S is given by

M: z, = Anzm + byt
(B.3)

Ym = Cpim .



where z,,(t) € R™ and y(t) € R are the state and output of M respectively at
time t € R, r(t) € R is a piecewise continuous reference signal, A,, is a constant
stable matrix, and b,, and c,, are constant n vectors. The reference model is
given in the controller canonical form of (B.2) with the coeflicients selected by the
designer so that M has the stability characteristics we would like S to have.
There exists a constant vector k* € R" and a constant scalar ky € R such
that
Am = A+ 0T b, = bk". (B .4)

It 1s assumed that kj is positive. Owing to the stability of M, there is a positive

definite matrix H which solves the Liapunov equation
ATH+ HA,, = -G (B.5)

for any given positive definite matrix G. To sumplify our argument further, we
will assume that the full state z of S is available for feedback, and that ¢, = c.

Now we use the control law
u=0%y (B.6)

where v(t) € R"+1:

CT, 7_T)‘T‘

v=( (B.7)

e = T — &, is the tracking error and () € R"*! is a vector of estimates of
the constant vector §* = (k*T,kT)T. Next, we substitute (B.5) into (B.1), and
subtract (B.3) to get a tracking error model

S.: é=A,e+bolv

(B 8)
y= cﬁe,

where ¢ = 6 — 6*.

To derive an adaptive law for (¢), we attempt to prove the stability of

the system S, using the second method of Liapunov Starting with the candidate

Liapunov function
Vieg)=eTHe+ ¢TI 'o (B.9)
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where I' is any positive definite (n + 1) x (n + 1) matrix, we take the total time
derivative of V (e, ¢) along the solutions of S, to get
Vie,¢)ps) = —eTGe+2e Hbp v+ 2071 1

(B.10)
V(t e,¢) € R x R" x R"*1.

Note that e7 Hb is a scalar. Now, if we let the adaptive gains obey the differential

equation
q%:é:—l’(eTHb'V (Bll)

then the second and third terms on the right hand side of (B.10) cancel and we

have .
Vie,¢)ps) = —e'Ge <0
(B 12)
V(t.e.¢) € R x R" x R*+!

thus V (e, #) is non increasing, which implies that e(t) and ¢(¢) are bounded for
all t > t;. The bounded solutions imply, in view of (B.8) and (B.11), that é(¢)
and ¢(t) are bounded, hence V(e, #) is bounded and therefore V(e, #) is uniformly
continuous on R x R™ x R"*1. Furthermore, the function V(¢) = V [z(¢), ¢(1)] is

decreasing and is bounded from below. Hence.

lim V(t) = iItlf Vit) = Vi > 0. (B.13)

t— 0
Denoting V(i) = V [z(2), ¢(1)](p.3), We have
t

im | V(r)dr=V, - Vs < oo (B.14)

t— 00 to

where V5 = V(zo). Since V(¢) is uniformly continuous, the integrand of (B.14)
must vanish as ¢ — 20. Thus we have lim,_ . V(t) = 0, therefore, in light of
(B.12), lim;_. e(t) = 0 for any given initial condition (¢y,Zg,#p) € R x R® x R™.

We have shown that (B.11) is the stabilizing adaptation law for the variable
gains . With this law, and under conditions where there 1s no external disturbance
or interconnection to other systems, the state z(t) of S will converge to the state

zm(t) of the model M as t — oo, that is. the tracking error will converge to zero.
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As an example, we consider adaptively controlling the unstable system

A:(? é)b:(?) (B.15)

so that is follows the reference model

Amz(_"l jg),bmz(‘(l)) (B.16)

Solving (B.5) with G = I3, we get

1.5 05
H= (0.5 0.5)' (B.17)
For the adaptive law, we choose I' = I3 (the 3 x 3 identity matrix), and use the

reference signal

r(t) = sin 20t + sin 5¢ + sint. (B.18)

The results of a simulation are plotted in Figure B 1, which shows tracking error
and gains as a function of time. Note that tracking error goes to zero and gains

tend toward the model-matching values of

k*:(:§)7k5=1, (B.19)

The adaptive control law derived above is globally assymptotically stable for
any unknown system S under the conditions stated. Unfortunately, however, the
combined equations (B.8), (B.11) describe a nonlinear system, and, in this case,
global assymptotic stability will not guarantee boundedness of solutions if the
system is driven by an external disturbance signal. Since in practical applications,
there is always some noise present, we must analyze the resulting behavior of the

adaptively controlled system.

Consider the uniformly bounded, unknown disturbance signal d(¢) driving

the system S

S:i=Az+bu+d (B.20)
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Using adaptive law (B.11) we have the error model
S.:é=Ane+bndTv+d (B21)

Persuing the line of reasoning (B.9) through (B.12) we get

Vie,¢)s.ay. =—eTGe+ 2 Hd
(B.11) (322)
V(t,e,¢) ER x R" x R"*1.

from which we cannot conclude the convergence of tracking errors, nor even the
boundedness of solutions [e(t), #(2)].

Indeed, we see from simulation, that solutions may diverge in the presence
of a bounded disturbance. Under the conditions of the example above, we have
applied the disturbance vector d(¢) = (d;, dz)T, where d; = 0 and d; is uniformly
distributed white noise on the interval [-1.5,1.5.. Simulation results are shown in
Figure B.2. The effect of the distrubance on the adaptive system is to continually
perturb the tracking error away from zero. As a result, the adapted gains drift to
larger and larger values, well beyond the model-matching values, with no guarantee
of finite limits. In view of the adaptation law (B.11) we realize that the adaptive
controller is not satisfied with the disturbance rejection the model would provide.
Instead, adaptation will cease only when tracking error 1s identically zero.

To make adaptive controllers robust with respect to bounded disturbances,

the so-called o-modification [18] is introduced into the adaptive law as follows
8 = ~I'(e? Hb)v — o). (B .23)

As shown in the main part of this thesis, the s-modification is crucial for
robustness to interconnections between decentrally controlled subsystems. For
now, we consider the uniformly bounded external disturbance d(t) input to the

isolated system S as before. The total time derivative of V' (e, ¢) with respect to

(B.21) and (B.23) is now

Ve, ¢)<(B.m). =—eTGe+2THd - 2097 ¢ — 2097 6"
B.23

(B.24)
V(t,e, ) € R x R™ x R"+1,
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by completing squares, this becomes

Ve, ¢)<B.m). = - §eTGe ~ —(e - 2G'H)TG(e —2G " 'Hd) + 2d" HG*Hd
(B.23

—opTo—o(¢p+6°)(s+6")+0670".
V(t,e.d) ER x R" x R"*1.
(B.25)

After dropping the negative completed squares, and taking norms, we have

), < — = min v 2 ﬂx___
Ve, ¢) ((%l”)) < QA (GHlell” + 2 Amin (G) d

— ol|g||* + =||6" |1 (B.26)
V(t.e,p) € R x R* x R,

where d = sup,[d(t)], and Agin(-) and Amax(-) denote the minimum and maximum
eigenvalues of the indicated matrices, respectively. Using the definition (B.9) we
can write the above inequality more compactly as

V(e,8) 5.1, < —pV +

P (B.27)
V(t,e,) € R x R" x R**!

where
1 )\mm((; )

H= “““{2 Ao ()T

Amue (T')}

) (B.28)
_2 ma.x J? g* 2
Amin (G) o8|

Thus V[e(t), #(t)] is monotonically decreasing function of time until V < V; where
Vf = u—lr’, (B29)

which implies that solutions to S, are uniformly ultimately bounded, and converge

to the residual set
Qs = {(e,¢): V(e.9) <17} (B.30)

Thus we see that adaptive laws using the o-modification as shown will tolerate

a bounded external disturbance. The tracking error will not in general converge
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to zero, but instead will reduce to below some residual bound, as determined by
the set Q2;, which will depend on the magnitude of the disturbance, the choice of
reference model, the magnitude of 8*, and the choice of design constants o and I'.

The effect of the o-modification on the disturbed example system is shown
in Figure B.3. Here we used the modified adaptive law (B.23) with ¢ = 0.01.
Note that tracking errors converge to within a bounded, nonzero interval and that
adapted gains also remain bounded. As shown in this thesis, there is a trade off

between reducing tracking errors and having high (but finite) adapted gains.
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Figure B.1. Tracking error and gaios for an isolated system.
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Figure B.3. Tracking error and gains with the o-modification.
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